Open Access
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
Page(s) 3317 - 3338
Published online 15 November 2021
  • H. Aboutorab, M. Saberi, M.R. Asadabadi, O. Hussain and E. Chang, ZBWM: the Z-number extension of Best Worst Method and its application for supplier development. Expert Syst. App. 107 (2018) 115–125. [CrossRef] [Google Scholar]
  • W. Agyei, W. Obeng-Denteh and E.A. Andaam, Modeling nurse scheduling problem using 0–1 goal programming: a case study of Tafo Government Hospital, Kumasi-Ghana. Int. J. Sci. Technol. Res. 4 (2015) 5–10. [CrossRef] [Google Scholar]
  • L.H. Aiken, D.M. Sloane, J. Ball, L. Bruyneel, A.M. Rafferty and P. Griffiths, Patient satisfaction with hospital care and nurses in England: an observational study. BMJ Open 8 (2018) e019189. [CrossRef] [PubMed] [Google Scholar]
  • M. Alharbi, Nurse scheduling model in saudi arabia hospitals. Int. J. Comput. Digital Syst. 7 (2018) 103–109. [CrossRef] [Google Scholar]
  • A. Amindoust, M. Asadpour and S. Shirmohammadi, A hybrid genetic algorithm for nurse scheduling problem considering the fatigue factor. J. Healthcare Eng. (2021). DOI:10.1155/2021/5563651. [Google Scholar]
  • M.P. Ariyani, C.N. Rosyidi and A. Aisyati, An optimization model of nurse scheduling using goal programming method: a case study. IOP Conf. Ser.: Mater. Sci. Eng. 1096 (2021) 12022. [Google Scholar]
  • A. Azadeh and R. Kokabi, Z-number DEA: a new possibilistic DEA in the context of Z-numbers. Adv. Eng. Inf. 30 (2016) 604–617. [CrossRef] [Google Scholar]
  • E. Babaee Tirkolaee and N.S. Aydin, A sustainable medical waste collection and transportation model for pandemics. Waste Manage. Res. 39 (2021) 34–44. [CrossRef] [PubMed] [Google Scholar]
  • S. Blythe and J.E. Goodpasture, Nursing home fraud schemes: Forensic accounting lessons from litigation. Int. J. Healthc. Manag. 14 (2021) 91–98. [CrossRef] [Google Scholar]
  • R.L. Burdett and E. Kozan, An integrated approach for scheduling health care activities in a hospital. Eur. J. Oper. Res. 264 (2018) 756–773. [Google Scholar]
  • E. Burke and E. Soubeiga, Scheduling nurses using a tabu-search hyperheuristic. In: Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK (2003) 180–197. [Google Scholar]
  • B. Chang, C.-W. Chang and C.-H. Wu, Fuzzy DEMATEL method for developing supplier selection criteria. Expert Syst. App. 38 (2011) 1850–1858. [CrossRef] [Google Scholar]
  • A.A. Constantino, E. Tozzo, R.L. Pinheiro, D. Landa-Silva and W. Romão, A variable neighbourhood search for nurse scheduling with balanced preference satisfaction. In: ICEIS (2015) 462–470. [Google Scholar]
  • J. den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester and L. De Boeck, Personnel scheduling: a literature review. Eur. J. Oper. Res. 226 (2013) 367–385. [CrossRef] [Google Scholar]
  • A. Dumrongsiri and P. Chongphaisal, Nurse scheduling in a hospital emergency department: a case study at a Thai University Hospital. Songklanakarin J. Sci. Technol. 40 (2018) 187–196. [Google Scholar]
  • M. Ehrgott and X. Gandibleux, Multi-objective combinatorial optimization – theory, methodology, and applications. In: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Springer (2003) 369–444. [CrossRef] [Google Scholar]
  • A.M. Fathollahi-Fard, A. Ahmadi, F. Goodarzian and N. Cheikhrouhou, A bi-objective home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy environment. Appl. Soft Comput. 93 (2020) 106385. [PubMed] [Google Scholar]
  • F. Goodarzian, A. Abraham and A.M. Fathollahi-Fard, A biobjective home health care logistics considering the working time and route balancing: a self-adaptive social engineering optimizer. J. Comput. Des. Eng. 8 (2021) 452–474. [Google Scholar]
  • H. Guo, J. Tang and G. Qu, Historical data-driven nurse flexible scheduling problem. In: 2013 25th Chinese Control and Decision Conference (CCDC) (2013) 1275–1280. [CrossRef] [Google Scholar]
  • R. Håkansson, Staff scheduling in elderly care: a simulation study of trade-offs, Dissertion (2015) [Google Scholar]
  • M. Hamid, R. Tavakkoli-Moghaddam, F. Golpaygani and B. Vahedi-Nouri, A multi-objective model for a nurse scheduling problem by emphasizing human factors. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 234 (2020) 179–199. [CrossRef] [PubMed] [Google Scholar]
  • R. Heiser, Using a best-practice perioperative governance structure to implement better block scheduling. AORN J. 97 (2013) 125–131. [CrossRef] [Google Scholar]
  • Y.-C. Hu and P.-C. Liao, Finding critical criteria of evaluating electronic service quality of internet banking using fuzzy multiple-criteria decision making. Appl. Soft Comput. 11 (2011) 3764–3770. [CrossRef] [Google Scholar]
  • P.J.H. Hulshof, N. Kortbeek, R.J. Boucherie, E.W. Hans and P.J.M. Bakker, Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS. Health Syst. 1 (2012) 129–175. [CrossRef] [Google Scholar]
  • C.-L. Hwang and K. Yoon, Methods for multiple attribute decision making. In: Multiple Attribute Decision Making. Springer (1981) 58–191. [Google Scholar]
  • H. Jafari and H. Haleh, Nurse scheduling problem by considering fuzzy modeling approach to treat uncertainty on nurses’ preferences for working shifts and weekends off. J. Optim. Ind. Eng. 14 (2021) 275–284. [Google Scholar]
  • B. Kang, D. Wei, Y. Li and Y. Deng, A method of converting Z-number to classical fuzzy number. J. Inf. Comput. Sci. 9 (2012) 703–709. [Google Scholar]
  • S.P. Keehan, D.A. Stone, J.A. Poisal, G.A. Cuckler, A.M. Sisko, S.D. Smith, A.J. Madison, C.J. Wolfe and J.M. Lizonitz, National health expenditure projections, 2016–25: price increases, aging push sector to 20 percent of economy. Health Affairs 36 (2017) 553–563. [CrossRef] [PubMed] [Google Scholar]
  • A. Legrain, J. Omer and S. Rosat, A rotation-based branch-and-price approach for the nurse scheduling problem. Math. Program. Comput. 12 (2020) 417–450. [CrossRef] [MathSciNet] [Google Scholar]
  • C.-C. Lin, J.-R. Kang, D.-J. Chiang and C.-L. Chen, Nurse scheduling with joint normalized shift and day-off preference satisfaction using a genetic algorithm with immigrant scheme. Int. J. Distrib. Sensor Netw. 11 (2015) 595419. [CrossRef] [Google Scholar]
  • B. Maenhout and M. Vanhoucke, An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems. Omega 41 (2013) 485–499. [CrossRef] [Google Scholar]
  • C. Maier-Rothe and H.B. Wolfe, Cyclical scheduling and allocation of nursing staff. Soc.-Econ. Plan. Sci. 7 (1973) 471–487. [CrossRef] [Google Scholar]
  • R. Meghdad, R. Nayereh, S. Zahra, Z. Houriye and N. Reza, Assessment of the performance of nurses based on the 360-degree model and fuzzy multi-criteria decision-making method (FMCDM) and selecting qualified nurses. Heliyon 6 (2020) e03257. [CrossRef] [PubMed] [Google Scholar]
  • A. Mobasher, Nurse Scheduling Optimization in a General Clinic and An Operating Suite. University of Houston (2011). [Google Scholar]
  • M. Mohammadian, M. Babaei, M. Amin Jarrahi and E. Anjomrouz, Scheduling nurse shifts using goal programming based on nurse preferences: a case study in an emergency department. Int. J. Eng. 32 (2019) 954–963. [Google Scholar]
  • C.W. Mueller and J.C. McCloskey, Nurses’ job satisfaction: a proposed measure. Nursing Res. 39 (1990) 113–117. [Google Scholar]
  • D.S.M. Nasir, N.H.C. Baharom, N.H. Shafii and N.A.M. Nor, Cyclical nurse scheduling in Shah Alam Hospital using goal programming. J. Comput. Res. Innov. 6 (2021) 1–10. [CrossRef] [Google Scholar]
  • J.H. Oldenkamp, Investigating reasoning in maternity-care scheduling. Knowl. Policy 5 (1992) 67–76. [CrossRef] [Google Scholar]
  • S.N.A. Razali, L.M. Fen, N. Arbin and A. Khamis, Integer linear programming on preference maximized of workforce scheduling. Compusoft 7 (2018) 2926–2930. [Google Scholar]
  • I. Rizany, R.T.S. Hariyati, E. Afifah and Rusdiyansyah, The impact of nurse scheduling management on nurses’ job satisfaction in army hospital: a cross-sectional research. SAGE Open 9 (2019) 2158244019856189. [CrossRef] [Google Scholar]
  • T. Saaty, The Analytic Hierarchy Process (AHP) for Decision Making. Kobe, Japan (1980). [Google Scholar]
  • J. Schoenfelder, K.M. Bretthauer, P.D. Wright and E. Coe, Nurse scheduling with quick-response methods: improving hospital performance, nurse workload, and patient experience. Eur. J. Oper. Res. 283 (2020) 390–403. [CrossRef] [Google Scholar]
  • T. Seyda and S. Hasan, Nurse scheduling using fuzzy modeling approach Fuzzy Sets and Systems. Oper. Res. 11 (2010) 1543–1563. [MathSciNet] [Google Scholar]
  • S.P. Siferd and W.C. Benton, Workforce staffing and scheduling: hospital nursing specific models. Eur. J. Oper. Res. 60 (1992) 233–246. [CrossRef] [Google Scholar]
  • S. Simić, D. Milutinović, S. Sekulić, D. Simić, S.D. Simić and J. Dordević, A hybrid case-based reasoning approach to detecting the optimal solution in nurse scheduling problem. Logic J. IGPL 28 (2020) 226–238. [MathSciNet] [Google Scholar]
  • A. Soroudi and T. Amraee, Decision making under uncertainty in energy systems: state of the art. Renew. Sustainable Energy Rev. 28 (2013) 376–384. [CrossRef] [Google Scholar]
  • A.C. Svirsko, B.A. Norman, D. Rausch and J. Woodring, Using mathematical modeling to improve the emergency department nurse-scheduling process. J. Emergency Nursing 45 (2019) 425–432. [CrossRef] [Google Scholar]
  • E.B. Tirkolaee, N.S. Aydin, M. Ranjbar-Bourani and G.W. Weber, A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect. Comput. Ind. Eng. 149 (2020) 106790. [CrossRef] [Google Scholar]
  • E.B. Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani and G.W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. J. Cleaner Prod. 250 (2020) 119517. [CrossRef] [Google Scholar]
  • A. Uhde, N. Schlicker, D.P. Wallach and M. Hassenzahl, Fairness and decision-making in collaborative shift scheduling systems. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (2020) 1–13. [Google Scholar]
  • Y. Yang and J. Wang, SMAA-based model for decision aiding using regret theory in discrete Z-number context. Appl. Soft Comput. 65 (2018) 590–602. [CrossRef] [Google Scholar]
  • L.A. Zadeh, A note on Z-numbers. Inf. Sci. 181 (2011) 2923–2932. [CrossRef] [Google Scholar]
  • S. Zanda, P. Zuddas and C. Seatzu, Long term nurse scheduling via a decision support system based on linear integer programming: a case study at the University Hospital in Cagliari. Comput. Ind. Eng. 126 (2018) 337–347. [CrossRef] [Google Scholar]
  • P. Zurn, C. Dolea and B. Stilwell, Nurse retention and recruitment: developing a motivated workforce. International Council of Nurses (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.