Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 1, January-February 2022
Page(s) 475 - 500
DOI https://doi.org/10.1051/ro/2022016
Published online 04 March 2022
  • T. Allahviranloo and R. Saneifard, Defuzzification method for ranking fuzzy numbers based on center of gravity. Iran. J. Fuzzy Syst. 9 (2012) 57–67. [Google Scholar]
  • A. Banerjee, A joint economic-lot-size model for purchaser and vendor. Decis. Sci. 17 (1986) 292–311. [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment. Manag. Sci. 17 (1970) B141–B164. [Google Scholar]
  • S. Benjaafar, Y. Li and M. Daskin, Carbon footprint and the management of supply chain: insights from simple models. IEEE Trans. Autom. Sci. Eng. 10 (2013) 99–116. [CrossRef] [Google Scholar]
  • A. Cambini and L. Martein, Generalized convexity and optimization: Theory and applications. Berlin, Heidelberg: Springer-Verlag (2009). [Google Scholar]
  • S.K. De and I. Beg, Triangular dense fuzzy sets and new defuzzification methods. J. Intell. Fuzzy Syst. 31 (2016) 469–477. [Google Scholar]
  • S.K. De and G.C. Mahata, Decision of a fuzzy inventory with fuzzy backorder Model under cloudy fuzzy demand rate. Int. J. Appl. Comp. Math. 3 (2017) 2593–2609. [CrossRef] [Google Scholar]
  • S.K. De and S.S. Sana, Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach. Ann. Oper. Res. 233 (2015) 57–76. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Ezzati, T. Allahviranloo, S. Khezerloo and M. Khezerloo, An approach for ranking of fuzzy numbers. Exp. Syst. App. 39 (2012) 690–695. [CrossRef] [Google Scholar]
  • P.M. Ghare and S.F. Schrader, A model for exponentially decaying inventory. J. Ind. Eng. 14 (1963) 238. [Google Scholar]
  • B.C. Giri and B. Roy, A vendor–buyer integrated production–inventory model with quantity discount and unequal sized shipments. Int. J. Prod. Res. 16 (2013) 1–13. [Google Scholar]
  • S.K. Goyal, An integrated inventory model for a single supplier-single customer problem. Int. J. Prod. Res. 15 (1976) 107–111. [Google Scholar]
  • S.K. Goyal, A joint economic-lot-size model for purchaser and vendor: a comment. Decis. Sci. 19 (1988) 236–241. [Google Scholar]
  • S.K. Goyal, A one-vendor multi-buyer integrated inventory model: a comment. Eur. J. Oper. Res. 82 (1995) 209–210. [Google Scholar]
  • S.K. Goyal and B.C. Giri, Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134 (2001) 1–16. [Google Scholar]
  • S.K. Goyal and F. Nebebe, Determination of economic production-shipment policy for a single-vendor–single-buyer system. Eur. J. Oper. Res. 121 (2000) 175–178. [CrossRef] [Google Scholar]
  • T. Hajjari and S. Abbasbandy, A note on “The revised method of ranking LR fuzzy number based on deviation degree”. Exp. Syst. Appl. 39 (2011) 13491–13492. [CrossRef] [Google Scholar]
  • P. He, W. Zhang, X. Xu and Y. Bian, Production lot-sizing and carbon emissions under cap-and trade and carbon tax regulations. J. Clean. Prod. 103 (2015) 241–248. [CrossRef] [Google Scholar]
  • L. He, J. Mao, C. Hu and Z. Xiao, Carbon emission regulation and operations in the supply chain super network under stringent carbon policy. J. Clean. Prod. 238 (2019) 117652. [CrossRef] [Google Scholar]
  • R.M. Hill, The single-vendor single-buyer integrated production-inventory model with a generalized policy. Eur. J. Oper. Res. 97 (1997) 493–499. [Google Scholar]
  • S.M. Hosseini-Motlagh, M. Nouri-Harzvili and R. Zirakpourdehkordi, Two-level supply chain quality improvement through a whole sale price coordination contract on pricing, quality and services. Int. J. Ind. Eng. Prod. Res. 30 (2019) 287–312. [Google Scholar]
  • V. Hovelaque and L. Bironneau, The carbon-constrained EOQ model with carbon emission dependent demand. Int. J. Prod. Econ. 164 (2015) 285–291. [Google Scholar]
  • G. Hua, T.C.E. Cheng and S. Wang, Managing carbon footprints in inventory management. Int. J. Prod. Econ. 132 (2011) 178–185. [Google Scholar]
  • N. Kazemi, E.U. Olugu, A.R. SalwaHanim and R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: an empirical study. Comp. Ind. Eng. 96 (2016) 140–148. [CrossRef] [Google Scholar]
  • P. Kelle, F. Al-khateeb and P.A. Miller, Partnership and negotiation support by joint optimal ordering/setup policies for JIT. Int. J. Prod. Econ. 81–82 (2003) 431–441. [CrossRef] [Google Scholar]
  • A. Kumar, P. Singh, P. Kaur and A. Kaur, A new approach for ranking of L-R type generalized fuzzy numbers. Exp. Syst. Appl. 38 (2011) 10906–10910. [Google Scholar]
  • Y.J. Lin and C.H. Ho, Integrated inventory model with quantity discount and price-sensitive demand. TOP 19 (2011) 177–188. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Lu, A one-vendor multi-buyer integrated inventory model. Eur. J. Oper. Res. 81 (1995) 312–323. [Google Scholar]
  • G.C. Mahata, A production-inventory model with imperfect production process and partial backlogging under learning considerations in fuzzy random environments. J Intell. Manuf. 28 (2017) 883–897. [CrossRef] [Google Scholar]
  • G.C. Mahata and A. Goswami, An EOQ model for deteriorating items under trade credit financing in the fuzzy sense. Prod. Plan. Cont. 18 (2007) 681–692. [Google Scholar]
  • G.C. Mahata and P. Mahata, Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain. Math. Comp. Model. 53 (2011) 1621–1636. [CrossRef] [Google Scholar]
  • C. Mahato and G.C. Mahata, Optimal inventory policies for deteriorating items with expiration date and dynamic demand under two-level trade credit. Opsearch 58 (2021) 994–1017. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Mahato and G.C. Mahata, Sustainable ordering policies with capacity constraint under order-size-dependent trade credit, all-units discount, carbon emission, and partial backordering. Process. Integr. Optim. Sustain. 5 (2021) 875–903. [CrossRef] [Google Scholar]
  • S. Maity, A. Chakraborty, S.K. De, S.P. Mondol and S. Alam, A comprehensive study of a backlogging EOQ model with nonlinear heptagonaldensefuzzyenvironment. RAIRO-Oper. Res. 54 (2020) 267–286. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Mukherjee and G.C. Mahata, Optimal replenishment and credit policy in an inventory model for deteriorating items under two-levels of trade credit policy when demand depends on both time and credit period involving default risk. RAIRO-Oper. Res. 52 (2018) 1175–1200. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P. Muniappan, R. Uthayakumar and S. Ganesh, A production inventory model for vendor–buyer coordination with quantity discount, backordering and rework for fixed life time products. J. Int. Prod. Econ. 33 (2016) 355–362. [Google Scholar]
  • M. Nouri, S.M. Hosseini-Motlagh and M. Nematollahi, Proposing a discount policy for two-level supply chain coordination with periodic review replenishment and promotional efforts decisions. Oper. Res. 21 (2021) 365–398. [Google Scholar]
  • L.Y. Ouyang, C.H. Ho, C.H. Su and C.T. Yang, An integrated inventory model with capacity constraint and order-size dependent trade credit. Comput. Ind. Eng. 84 (2015) 133–143. [Google Scholar]
  • S. Panja and S.K. Mondal, Analyzing a four-layer green supply chain imperfect production inventory model for green products under type-2 fuzzy credit period. Comput. Ind. Eng. 129 (2019) 435–453. [Google Scholar]
  • F. Raafat, Survey of literature on continuously deteriorating inventory model. J. Oper. Res. Soc. 42 (1991) 27–37. [CrossRef] [Google Scholar]
  • H. Rau, M.Y. Wu and H.M. Wee, Integrated inventory model for deteriorating items under a multi-echelon supply chain environment. Int. J. Prod. Econ. 86 (2003) 155–162. [CrossRef] [Google Scholar]
  • Y.J. Shen, K.F. Shen and C.T. Yang, A production-inventory model for deteriorating items with collaborative preservation technology investment under carbon tax. Sustainability 11 (2019) 5027. [CrossRef] [Google Scholar]
  • E. Teimoury and S.M.M. Kazemi, An integrated pricing and inventory model for deteriorating products in a two stage supply chain under replacement and shortage. Sci. Iran. 24 (2017) 342–354. [Google Scholar]
  • W.C. Wang, J.T. Teng and K.R. Lou, Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime. Eur. J. Oper. Res. 232 (2014) 315–321. [Google Scholar]
  • I.P. Wright, Factors affecting the cost of airplanes. J. Aeronaut. Sci. 3 (1936) 122–128. [CrossRef] [Google Scholar]
  • J. Wu, C.T. Chang, J.T. Teng and K.K. Lai, Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date. Int. J. Prod. Econ. 193 (2017) 343–351. [CrossRef] [Google Scholar]
  • R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24 (1981) 143–161. [Google Scholar]
  • V.F. Yu, H.T.X. Chi, L.Q. Dat, P.N.K. Phuc and C.W. Shen, Ranking generalized fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and areas. Appl. Math. Model. 37 (2013) 8106–8117. [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Cont. 8 (1965) 338–356. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.