Open Access
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
Page(s) 565 - 582
Published online 25 March 2022
  • F. Abu-Khzam and P. Heggernes, Enumerating minimal dominating sets in chordal graphs. Inf. Process. Lett. 116 (2016) 739–743. [CrossRef] [Google Scholar]
  • M.I. Andreou, V.G. Papadopoulou, P.G. Spirakis, B. Theodorides and A. Xeros, Generating and radiocoloring families of perfect graphs. In: Experimental and Efficient Algorithms. Springer (2005) 302–314. [CrossRef] [Google Scholar]
  • J.R.S. Blair and B.W. Peyton, An introduction to chordal graphs and clique trees. In: Graph Theory and Sparse Matrix Computations. IMA in Math. Appl., Vol. 56. Springer (1993) 1–27. [CrossRef] [Google Scholar]
  • M. Bougeret, N. Bousquet, R. Giroudeau and R. Watrigant, Parameterized complexity of the sparsest k-subgraph problem in chordal graphs. SOFSEM. Springer (2014) 150–161. [Google Scholar]
  • A. Brandstädt, V.B. Le and J. Spinrad, Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999). [Google Scholar]
  • P. Buneman, A characterisation of rigid circuit graphs. Disc. Math. 9 (1974) 205–212. [CrossRef] [Google Scholar]
  • G.A. Dirac, On rigid circuit graphs. Ann. Math. Sem. Univ. Hamburg 25 (1961) 71–76. [CrossRef] [Google Scholar]
  • T. Ekim, M. Shalom and O. Şeker, The complexity of subtree intersection representation of chordal graphs and linear time chordal graph generation. J. Comb. Optim. 41 (2021) 710–735. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Fulkerson and O. Gross, Incidence matrices and interval graphs. Pac. J. Math. 15 (1965) 835–855. [CrossRef] [Google Scholar]
  • F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comp. 1 (1972) 180–187. [CrossRef] [Google Scholar]
  • F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Th. B 16 (1974) 47–56. [Google Scholar]
  • P. Golovach, P. Heggernes, D. Kratsch and R. Saei, An exact algorithm for Subset Feedback Vertex Set on chordal graphs. J. Disc. Alg. 26 (2014) 7–15. [Google Scholar]
  • P. Golovach, P. Heggernes and D. Kratsch, Enumerating minimal connected dominating sets in graphs of bounded chordality. Theor. Comput. Sci. 630 (2016) 63–75. [CrossRef] [Google Scholar]
  • M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Ann. Disc. Math. Vol. 57. Elsevier (2004). [Google Scholar]
  • A. Hajnal and J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen. Ann. Univ. Sci. Budapest (1958) 113–121. [Google Scholar]
  • G.H. Hardy and J.E. Littlewood, Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ν-functions. Acta Math. 37 (1914) 193–239. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Heggernes, Minimal triangulations of graphs: a survey. Disc. Math. 306 (2006) 297–317. [CrossRef] [Google Scholar]
  • D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms. Vol. 2, Chapter 4. Addison-Wesley (1969). [Google Scholar]
  • D. Loksthanov, Dagstuhl Seminar 14071 “Graph Modification Problems (2014). [Google Scholar]
  • G.S. Lueker and K.S. Booth, A linear time algorithm for deciding interval graph isomorphism. JACM 26 (1979) 183–195. [CrossRef] [Google Scholar]
  • L. Markenzon, O. Vernet and L.H. Araujo, Two methods for the generation of chordal graphs. Ann. Oper. Res. 157 (2008) 47–60. [Google Scholar]
  • D. Marx, Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351 (2006) 407–424. [CrossRef] [Google Scholar]
  • N. Misra, F. Panolan, A. Rai, V. Raman and S. Saurabh, Parameterized Algorithms for Max Colorable Induced Subgraph Problem on Perfect Graphs, LNCS, vol. 8165 Springer (2013) 370–381. [Google Scholar]
  • J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (2014). [Google Scholar]
  • S.V. Pemmaraju, S. Penumatcha and R. Raman, Approximating interval coloring and max-coloring in chordal graphs. J. Exp. Alg. 10 (2005) 2–8. [Google Scholar]
  • A.S. Rodionov and H. Choo, On generating random network structures: trees. International Conference on Computational Science. LNCS, Vol. 2658. Springer (2003) 879–887. [Google Scholar]
  • D.J. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph Theory Comput. 183 (1972) 217. [Google Scholar]
  • D.J. Rose, R.E. Tarjan and G.S. Lueker, Algorithmic aspects of vertex elimination on graphs. SIAM J. Comp. 5 (1976) 266–283. [CrossRef] [Google Scholar]
  • O. Şeker, P. Heggernes, T. Ekim and Z.C. Taşkn, Linear-time generation of random chordal graphs. In: Algorithms and Complexity: 10th International Conference, CIAC 2017, LNCS, Vol. 10236. Springer (2017) 442–453. [Google Scholar]
  • J.P. Spinrad, Efficient Graph Representations. Fields Institute Monograph Series. Vol. 19. AMS (2003). [Google Scholar]
  • R.E. Tarjan, Data Structures and Network Algorithms. SIAM, Philadelphia, (1983). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.