Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
Page(s) 955 - 957
DOI https://doi.org/10.1051/ro/2022014
Published online 14 April 2022
  • A.I. Al-Omari, The efficiency of L ranked set sampling in estimating the distribution function. Afrika Matematika 26 (2015) 1457–1466. [CrossRef] [MathSciNet] [Google Scholar]
  • A.I. Al-Omari, Quartile ranked set sampling for estimating the distribution function. J. Egypt. Math. Soc. 24 (2016) 303–308. [CrossRef] [Google Scholar]
  • A.I. Al-Omari, Maximum likelihood estimation in location-scale families using varied L ranked set sampling. RAIRO-Oper. Res. 55 (2021) S2759–S2771. [CrossRef] [EDP Sciences] [Google Scholar]
  • A.I. Al-Omari and M.S. Abdallah, Estimation of the distribution function using moving extreme and MiniMax ranked set sampling. To appear in: Commun. Stat. Simul. Comput. (2021) 1–21. DOI: 10.1080/03610918.2021.1891433 [CrossRef] [Google Scholar]
  • M.F. Al-Saleh and D.M. Ahmad, Estimation of the distribution function using moving extreme ranked set sampling (MERSS). In: Ranked Set Sampling: 65 years Improving the Accuracy in Data Gathering. Academic Press (2019), 43–58. [Google Scholar]
  • S. Ashour and M. Abdallah, New distribution function estimators and tests of perfect ranking in concomitant-based ranked set sampling. To appear in: Commun. Stat. Simul. Comput. (2019) 1–26. DOI: 10.1080/03610918.2019.1659360. [Google Scholar]
  • S. Ashour and M. Abdallah, Parametric estimation based on ranked set sampling: missing data approach. J. Sci. Gazi Univ. 32 (2019) 1356–1368. [CrossRef] [Google Scholar]
  • S. Ashour and M. Abdallah, Estimation of distribution function based on ranked set sampling: missing data approach. Thailand Stat. 18 (2020) 27–42. [Google Scholar]
  • Z. Chen, Z. Bai and B.K. Sinha, Ranked Set Sampling: Theory and Applications. Springer, New York (2004). [CrossRef] [Google Scholar]
  • W. Chen, C. Long, R. Yang and D. Yao, Maximum likelihood estimator of the location parameter under moving extremes ranked set sampling design. Acta Math. App. Sin. Ser. 37 (2021) 101–108. [CrossRef] [Google Scholar]
  • T.R. Dell and J.L. Clutter, Ranked set sampling theory with order statistics background. Biometrics 28 (1972) 545–555. [Google Scholar]
  • A. Eftekharian and M. Razmkhah, On estimating the distribution function and odds using ranked set sampling. Stat. Probab. Lett. 122 (2017) 1–10. [CrossRef] [Google Scholar]
  • J. Frey and L. Wang, EDF-based goodness-of-fit tests for ranked set sampling. Can. J. Stat. 42 (2014) 451–469. [CrossRef] [Google Scholar]
  • J. Frey and Y. Zhang, Improved exact confidence intervals for a proportion using ranked-set sampling. J. Korean Stat. Soc. 48 (2019) 493–501. [CrossRef] [Google Scholar]
  • J. Frey and Y. Zhang, Robust confidence intervals for a proportion using rankedset sampling. J. Korean Stat. Soc. 50 (2021) 1009–1028. [CrossRef] [Google Scholar]
  • N. Gemayel, E. Stasny, J. Tackett and D. Wolfe, Ranked set sampling: an auditing application. Rev. Quant. Finance Acc. 39 (2012) 413–422. [CrossRef] [Google Scholar]
  • A. Göçoğlu and N. Demirel, Estimating the population proportion in modified ranked set sampling methods. J. Stat. Comput. Simul. 89 (2019) 2694–2710. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Haq, J. Brown, E. Moltchanova and A.I. Al-Omari, Varied L ranked set sampling scheme. J. Stat. Theory Pract. 9 (2015) 741–767. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Hassan, A. Al-Omar and H. Nagy, Stress-strength reliability for the generalized inverted exponential distribution using MRSS. Iran J. Sci. Technol. Trans. Sci. 45 (2021) 641–659. [CrossRef] [MathSciNet] [Google Scholar]
  • P.H. Kvam, Ranked set sampling based on binary water quality data with covariates. J. Agric. Biol. Environ. Stat. 8 (2003) 271–279. [CrossRef] [Google Scholar]
  • P. Kvam and F. Samaniego, Nonparametric maximum likelihood estimation based on ranked set samples. J. Am. Stat. Assoc. 89 (1994) 526–537. [CrossRef] [Google Scholar]
  • M. Mahdizadeh and E. Zamanzade, Kernel-based estimation of P(x > y) in ranked set sampling. SORT 40 (2016) 243–266. [MathSciNet] [Google Scholar]
  • M. Mahdizadeh and E. Zamanzade, Efficient body fat estimation using multistage pair ranked set sampling. Stat. Methods Med. Res. 28 (2019) 223–234. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • G.A. McIntyre, A method for unbiased selective sampling using ranked set sampling. Aust. J. Agric. Res. 3 (1952) 385–390. [CrossRef] [Google Scholar]
  • H. Morabbi and M. Razmkhah, Quantile estimation based on modified ranked set sampling schemes using Pitman closeness. To appear: Commun. Stat. Simul. Comput. (2020) DOI: 10.1080/03610918.2020.1811329. [Google Scholar]
  • O. Ozturk, Nonparametric maximum-likelihood estimation of within-set ranking errors in ranked set sampling. J. Nonparametric Stat. 22 (2010) 823–840. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Ozturk, Parametric estimation of location and scale parameters in ranked set sampling. J. Stat. Planning Inference 141 (2011) 1616–1622. [CrossRef] [Google Scholar]
  • A.M. Polansky and E.R. Baker, Multistage plugin bandwidth selection for kernel distribution function estimates. J. Stat. Comput. Simul. 65 (2000) 63–80. [CrossRef] [Google Scholar]
  • S.L. Stokes and T.W. Sager, Characterization of a ranked-set sample with application to estimating distribution functions. J. Am. Stat. Assoc. 83 (1988) 374–381. [CrossRef] [Google Scholar]
  • E. Zamanzade, EDF-based tests of exponentiality in pair ranked set sampling. Stat. Papers 60 (2019) 2141–2159. [CrossRef] [Google Scholar]
  • E. Zamanzade and M. Mahdizadeh, A more efficient proportion estimator in ranked set sampling. Stat. Probab. Lett. 129 (2017) 28–33. [CrossRef] [Google Scholar]
  • E. Zamanzade and M. Mahdizadeh, Estimating the population proportion in pair ranked set sampling with application to air quality monitoring. J. Appl. Stat. 45 (2018) 426–437. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Zamanzade and M. Mahdizadeh, Using ranked set sampling with extreme ranks in estimating the population proportion. Stat. Methods Med. Res. 29 (2020) 165–177. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • E. Zamanzade and X. Wang, Estimation of population proportion for judgment post-stratification. Comput. Stat. Data Anal. 112 (2017) 257–269. [CrossRef] [Google Scholar]
  • E. Zamanzade, A. Parvardeh and M. Asadi, Estimation of mean residual life based on ranked set sampling. Comput. Stat. Data Anal. 135 (2019) 35–55. [CrossRef] [Google Scholar]
  • E. Zamanzade, M. Mahdizadeh and H. Samawi, Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability. AStA Adv. Stat. Anal. 104 (2020) 485–502. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.