Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
|
|
---|---|---|
Page(s) | 619 - 635 | |
DOI | https://doi.org/10.1051/ro/2022034 | |
Published online | 14 April 2022 |
- T. Amahroq and A. Oussarhan, Existence of pseudo-relative sharp minimizers in set-valued optimization. Appl. Math. Optim. 84 (2021) 2969–2984. [CrossRef] [MathSciNet] [Google Scholar]
- T. Amahroq and A. Taa, On Karush–Kuhn–Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997) 159–172. [CrossRef] [MathSciNet] [Google Scholar]
- T. Amahroq and L. Thibault, On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems. Numer. Funct. Anal. Optim. 16 (1995) 1293–1307. [CrossRef] [MathSciNet] [Google Scholar]
- T. Amahroq, A. Jourani and L. Thibault, A general metric regularity in asplund banach spaces. Numer. Funct. Anal. Optim. 19 (1998) 215–226. [CrossRef] [MathSciNet] [Google Scholar]
- T. Amahroq, I. Daidai and A. Syam, Optimality conditions for sharp minimality of order γ in set-valued optimization. Le matematiche J. 73 (2018) 99–114. [Google Scholar]
- A. Auslender, Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984) 239–254. [CrossRef] [MathSciNet] [Google Scholar]
- H.H. Bauschke, J.M. Borwein and W. Li, Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G) and error bounds in convex optimization. Math. Program. 86 (1999) 135–160. [CrossRef] [MathSciNet] [Google Scholar]
- E.M. Bednarczuk, Weak sharp efficiency and growth condition for vector-valued functions with applications. Optimization 53 (2004) 455–474. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Borwein and R. Goebel, Notions of relative interior in Banach spaces. J. Math. Sci. (NY) 115 (2003) 2542–2553. [CrossRef] [Google Scholar]
- J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming. SIAM J. Control Opt. 31 (1993) 1340–1359. [CrossRef] [Google Scholar]
- F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, (1983). [Google Scholar]
- L. Cromme, Strong uniqueness: a far reaching criterion for the convergence of iterative procedures. Numer. Math. 29 (1978) 179–193. [CrossRef] [Google Scholar]
- M. Durea and R. Strugariu, Necessary optimality conditions for weak sharp minima in set-valued optimization. Nonlinear Anal. 73 (2010) 2148–2157. [CrossRef] [MathSciNet] [Google Scholar]
- F. Flores-Bazán and B. Jiménez, Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48 (2009) 881–908. [CrossRef] [MathSciNet] [Google Scholar]
- R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions. J. Math. Anal. App. 258 (2001) 110–130. [CrossRef] [Google Scholar]
- A.D. Ioffe, Approximate subdifferential and applications, Part 3. Mathematika 36 (1989) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
- A.D. Ioffe, Metric regularity and subdifferential calculus. Russ. Math. Surv. 55 (2000) 501–558. [CrossRef] [Google Scholar]
- A.D. Ioffe, Variational Analysis of Regular Mappings Theory and Applications. Springer, Cham (2017). [CrossRef] [Google Scholar]
- B. Jiménez, Strict efficiency in vector optimization. J. Math. Anal. Appl. 265 (2002) 264–284. [CrossRef] [MathSciNet] [Google Scholar]
- B. Jiménez, Strict minimality conditions in nondifferentiable multiobjective programming. J. Optim. Theory Appl. 116 (2003) 99–116. [CrossRef] [MathSciNet] [Google Scholar]
- B. Jiménez and V. Novo, Higher-order optimality conditions for strict local minima. Ann. Oper. Res. 157 (2008) 183–192. [Google Scholar]
- A. Jourani, Formules d’intersection dans un Espace de Banach. C.R.A.S. Paris 317 (1993) 825–828. [Google Scholar]
- A. Jourani and L. Thibault, Approximate subdifferentials of composite functions. Bull. Aust. Math. Soc. 47 (1993) 443–455. [CrossRef] [Google Scholar]
- A.Y. Kruger and N.H. Thao, Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164 (2015) 41–67. [CrossRef] [MathSciNet] [Google Scholar]
- A.Y. Kruger, D.R. Luke and N.H. Thao, About subtransversality of collections of sets. Set-Valued Var. Anal. 25 (2017) 701–729. [CrossRef] [MathSciNet] [Google Scholar]
- A.Y. Kruger, D.R. Luke and N.H. Thao, Set regularities and feasibility problems. Math. Program. 168 (2018) 279–311. [CrossRef] [MathSciNet] [Google Scholar]
- A.S. Lewis and J.S. Pang, Eror bounds for convex inequality systems. In: Proceedings of the 5th symposium on generalized convexity, edited by J.P. Crouzeix. Marseille, France (1996). [Google Scholar]
- S.J. Li, K.W. Meng and J.-P. Penot, Calculus rules for derivatives of multimaps. Set-Valued Var. Anal. 17 (2009) 21–39. [CrossRef] [MathSciNet] [Google Scholar]
- S. Li, J.-P. Penot and X. Xue, Codifferential calculus. Set-Valued Var. Anal. 19 (2011) 505–536. [CrossRef] [MathSciNet] [Google Scholar]
- K.F. Ng and R. Zang, Linear regularity and ϕ-regularity of nonconvex sets. J. Math. Anal. Appl. 328 (2007) 257–280. [CrossRef] [MathSciNet] [Google Scholar]
- H.V. Ngai and M. Théra, Metric inequality, subdifferential calculus and applications. Set-Valued Var. Anal. 9 (2001) 187–216. [CrossRef] [MathSciNet] [Google Scholar]
- J.-P. Penot, Metric estimates for the calculus of multimapping. Set-Valued Var. Anal. 5 (1997) 291–308. [CrossRef] [Google Scholar]
- J.-P. Penot, Calculus Without Derivatives. Springer, New York (2013). [CrossRef] [Google Scholar]
- M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986) 1044–1049. [CrossRef] [MathSciNet] [Google Scholar]
- M. Studniarski, Weak sharp minima in multiobjective optimization. Control Cybern. 36 (2007) 925–937. [Google Scholar]
- D.E. Ward, Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80 (1994) 551–571. [CrossRef] [MathSciNet] [Google Scholar]
- A. Zaffaroni, Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42 (2003) 1071–1086. [CrossRef] [MathSciNet] [Google Scholar]
- C. Zălinescu, Convex Analysis in General Vector Spaces. World Scientific, Singapore, (2002). [CrossRef] [Google Scholar]
- X.-Y. Zheng and K.F. NG, Hölder stable minimizers, tilt stability and Hölder metric regularity of subdifferentials. SIAM J. Optim. 25 (2015) 416–438. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Zhu, S.J. Li and X.W. Xue, Strong fermat rules for constrained set-valued optimization problems on banach spaces. Set-Valued Var. Anal. 20 (2012) 637–666. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.