Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
|
|
---|---|---|
Page(s) | 637 - 648 | |
DOI | https://doi.org/10.1051/ro/2022035 | |
Published online | 14 April 2022 |
- O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272 (2002) 368–379. [Google Scholar]
- O.P. Agrawal, Analytical schemes for a new class of fractional differential equations. J. Phys. A: Math. Theor 40 (2007) 5469–5477. [CrossRef] [Google Scholar]
- O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor 40 (2007) 6287–6303. [CrossRef] [Google Scholar]
- O.P. Agrawal, A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337 (2008) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
- O.P. Agrawal, A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14 (2008) 1291–1299. [CrossRef] [MathSciNet] [Google Scholar]
- O.P. Agrawal, Generalized variational problems and Euler-Lagrange equations. Comput. Math. 59 (2010) 1852–1864. [Google Scholar]
- O.P. Agrawal and D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13 (2007) 1269–1281. [CrossRef] [MathSciNet] [Google Scholar]
- R. Almeida, Fractional variational problems depending on indefinite integrals and with delay. Bull. Malays. Math. Sci. Soc. 39 (2016) 1515–1528. [CrossRef] [MathSciNet] [Google Scholar]
- R. Almeida, Variational problems involving a caputo-type fractional derivative. J. Optim. Theory Appl. 174 (2017) 276–294. [CrossRef] [MathSciNet] [Google Scholar]
- R. Almeida, D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1490–1500. [CrossRef] [MathSciNet] [Google Scholar]
- D. Baleanu, A. Mousalou and S. Rezapour, A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative. Adv. Differ. Equ. 51 (2017) 1–12. [Google Scholar]
- I.B. Bapna and N. Mathur, Application of fractional calculus in statistics. Int. J. Contemp. Math. Sci. 7 (2012) 849–856. [MathSciNet] [Google Scholar]
- L. Elsgolts, Differential Equations and Calculus of Variations. Mir Publication, Moscow (1970). [Google Scholar]
- Y. Feng, X. Yang and J. Liu, On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative. Chin. J. Phys. 66 (2020) 269–276. [CrossRef] [Google Scholar]
- G.S.F. Frederico, Fractional optimal control in the sense of Caputo and the fractional Noethers theorem. Int. Math. Forum 3 (2008) 479–493. [MathSciNet] [Google Scholar]
- G.S.F. Frederico and D.F.M. Torres, A formulation of Neother’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334 (2007) 834–846. [CrossRef] [MathSciNet] [Google Scholar]
- B. Ghanbari, S. Kumar and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133 (2020) 109619. [CrossRef] [MathSciNet] [Google Scholar]
- E.F.D. Goufo, S. Kumar and S.B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 130 (2020) 109467. [CrossRef] [MathSciNet] [Google Scholar]
- M. Klimek, Fractional sequential mechanics – models with symmetric fractional derivative. Czech. J. Phys. 51 (2001) 1348–1354. [CrossRef] [Google Scholar]
- M. Klimek, Lagrangean and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52 (2002) 1247–1253. [CrossRef] [Google Scholar]
- D. Kumar, J. Singh and D. Baleanu, Modified Kawahara equation within a fractional derivative with non-singular kernel. Thermal Sci. 22 (2018) 789–796. [CrossRef] [Google Scholar]
- S. Kumar, R. Kumar, R.P. Agarwal and B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams–Bashforth–Moulton methods. Math. Methods Appl. Sci. 43 (2020) 5564–5578. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kumar, R. Kumar, C. Cattani and B. Samet, Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 135 (2020) 109811. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kumar, K.S. Nisar, R. Kumar, C. Cattani and B. Samet, A new Rabotnov fractional-exponential function based fractional derivative for diffusion equation under external force. Math Meth Appl Sci. 43 (2020) 4460–4471. [Google Scholar]
- S. Kumar, R.P. Chauhan, S. Momani and S. Hadid, Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Part. Differ. Equ. (2020) 1–27. DOI: 10.1002/num.22707. [Google Scholar]
- S. Kumar, A. Kumar, A.H. Abdel-Aty and M.R. Alharthi, A study on four-species fractional population competetion dynamical model. Results Phys. 24 (2021) 104089. [CrossRef] [Google Scholar]
- S. Kumar, R.P. Chauhan, A.H. Abdel-Aty and M.R. Alharthi, A study on transmission dynamics of HIV/AIDS model through fractional operators. Results Phys. 22 (2021) 1–14. [Google Scholar]
- S. Kumar, A. Kumar, B. Samet and H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Part. Differ. Equ. 37 (2021) 1673–1692. [CrossRef] [Google Scholar]
- M.J. Lazo and D.F.M. Torres, The Legendre condition of the fractional calculus of variations. Optimization 63 (2014) 1157–1165. [CrossRef] [MathSciNet] [Google Scholar]
- A.B. Malinowska and D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14 (2011) 523–537. [CrossRef] [MathSciNet] [Google Scholar]
- T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75 (2012) 1507–1515. [CrossRef] [MathSciNet] [Google Scholar]
- I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). [Google Scholar]
- G. Rahman, K.S. Nisar, B. Ghanbari and T. Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals. Adv. Differ. Equ. 368 (2020) 1–19. [Google Scholar]
- F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. 53 (1996) 1890–1899. [MathSciNet] [Google Scholar]
- F. Riewe, Mechanics with fractional derivatives. Phys. Rev. 55 (1997) 3581–3592. [MathSciNet] [Google Scholar]
- B. Ross, The development of fractional calculus 1695–1900. Hist. Math. 4 (1977) 75–89. [CrossRef] [Google Scholar]
- J. Singh, D. Kumar and J.J. Nieto, Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos Solitons Fractals 99 (2017) 109–115. [CrossRef] [MathSciNet] [Google Scholar]
- D. Usero, Fractional Taylor series for Caputo fractional derivatives. In: Construction of Numerical Schemes. Universidad Complutense de Madrid, Spain (2007). [Google Scholar]
- D. Wang and A. Xiao, Numerical methods for fractional variational problems depending on indefinite integrals. ASME. J. Comput. Nonlinear Dynam. 8 (2013) 021018. [CrossRef] [Google Scholar]
- J. Zhang, X. Ma and L. Li, Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives. Adv. Differ. Equ. 357 (2017) 1–14. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.