Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
Page(s) 1013 - 1029
DOI https://doi.org/10.1051/ro/2022028
Published online 14 April 2022
  • P. Alavian, Y. Eun, S.M. Meerkov and L. Zhang, Smart production systems: automating decision-making in manufacturing environment. Int. J. Prod. Res. 58 (2020) 828–845. [CrossRef] [Google Scholar]
  • Z. Asim, S.A. Jalil and S. Javaid, An uncertain model for integrated production-transportation closed-loop supply chain network with cost reliability. Sust. Prod. Consump. 17 (2019) 298–310. [Google Scholar]
  • M.A. Bermeo-Ayerbe, C. Ocampo-Martnez and J. Diaz-Rozo, Adaptive predictive control for peripheral equipment management to enhance energy efficiency in smart manufacturing systems. J. Clean. Prod. 291 (2021) 125556. [CrossRef] [Google Scholar]
  • S. Bhuniya, S. Pareek, B. Sarkar and B.K. Sett, A Smart Production Process for the Optimum Energy Consumption with Maintenance Policy under a Supply Chain Management. Processes 9 (2021) 19. [Google Scholar]
  • B.-Y. Cao and P.-H. Wang, The Origin and Development of Fuzzy Geometric Programming. Fuzzy Inf. Eng. 11 (2019) 203–211. [CrossRef] [Google Scholar]
  • A. Chassein and M. Goerigk, On the complexity of robust geometric programming with polyhedral uncertainty. Oper. Res. Let. 47 (2019) 21–24. [CrossRef] [Google Scholar]
  • D. Chavarra-Barrientos, R. Batres, P.K. Wright and A. Molina, A methodology to create a sensing, smart and sustainable manufacturing enterprise. Int. J. Prod. Res. 56 (2018) 584–603. [CrossRef] [Google Scholar]
  • Z. Chen, Z. Chen, D. Zhou, T. Xia and E. Pan, Reliability evaluation for multi-state manufacturing systems with quality-reliability dependency. Comp. Ind. Eng. 154 (2021) 107166. [CrossRef] [Google Scholar]
  • B.K. Dey, S. Bhuniya and B. Sarkar, Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Exp. Sys. App. 184 (2021) 115464. [CrossRef] [Google Scholar]
  • M. Dressler, S. Iliman and T.D. Wolff, An approach to constrained polynomial optimization via nonnegative circuit polynomials and geometric programming. J. Symb. Comp. 91 (2019) 149–172. [CrossRef] [Google Scholar]
  • M.F. El-Wakeel and R.S.A. Salman, Multi-product, multi-venders inventory models with different cases of the rational function under linear and non-linear constraints via geometric programming approach. J. King Saud Univ. Sci. 31 (2019) 902–912. [CrossRef] [Google Scholar]
  • B. Ghavami, M. Raji, R. Rasaizadi and M. Mashinchi, Process variation-aware gate sizing with fuzzy geometric programming. Comp. Elec. Eng. 78 (2019) 259–270. [CrossRef] [Google Scholar]
  • M. Ghobakhloo, Determinants of information and digital technology implementation for smart manufacturing. Int. J. Prod. Res. 58 (2020) 2384–2405. [CrossRef] [Google Scholar]
  • M.S. Habib, O. Asghar, A. Hussain, M. Imran, M.P. Mughal and B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 278 (2021) 122403. [CrossRef] [Google Scholar]
  • M. Hayhoe, F. Barreras and V.M. Preciado, Multitask learning and nonlinear optimal control of the COVID-19 outbreak: a geometric programming approach. Ann. Rev. Cont. 52 (2021) 495–507. [CrossRef] [Google Scholar]
  • E. Jafarian, J. Razmi and M.F. Baki, A flexible programming approach based on intuitionistic fuzzy optimization and geometric programming for solving multi-objective nonlinear programming problems. Exp. Sys. with App. 93 (2018) 245–256. [CrossRef] [Google Scholar]
  • W.A. Jauhari, I.N. Pujawan and M. Suef, A closed-loop supply chain inventory model with stochastic demand, hybrid production, carbon emissions, and take-back incentives. J. Clean. Prod. 320 (2021) 128835. [CrossRef] [Google Scholar]
  • K. Kalaiarasi, M.S. Begum and M. Sumathi, Optimization of unconstrained multi-item (EPQ) model using fuzzy geometric programming with varying fuzzification and defuzzification methods by applying python. To appear in: Mat. Tod.: Proc. (2021) DOI: 10.1016/j.matpr.2020.10.588. [Google Scholar]
  • A. Kusiak, Smart manufacturing. Int. J. Prod. Res. 56 (2018) 508–517. [CrossRef] [Google Scholar]
  • K.-N.F. Leung, A generalized geometric-programming solution to “An economic production quantity model with flexibility and reliability consideration”. Europ. J. Oper. Res. 176 (2007) 240–251. [CrossRef] [Google Scholar]
  • S.-T. Liu, Profit maximization with quantity discount: an application of geometric programming. Appl. Math. Comp. 190 (2007) 1723–1729. [CrossRef] [Google Scholar]
  • S.-T. Liu, Using geometric programming to profit maximization with interval coefficients and quantity discount. Appl. Math. Comp. 209 (2009) 259–265. [CrossRef] [Google Scholar]
  • A.S. Mahapatra, H.N. Soni, M.S. Mahapatra, B. Sarkar and S. Majumder, A Continuous Review Production-Inventory System with a Variable Preparation Time in a Fuzzy Random Environment. Mathematics 9 (2021) 747. [CrossRef] [Google Scholar]
  • I. Moon, W.Y. Yun and B. Sarkar, Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. Europ. J. Ind. Eng. (2022). [Google Scholar]
  • N. Nahas, Buffer allocation, equipment selection and line balancing optimisation in unreliable production lines. Eur. J. Ind. Eng. 14 (2020) 217–246. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Sarkar, B. Ganguly and L.E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management. Int. J. Prod. Econ. 231 (2021) 107867. [CrossRef] [Google Scholar]
  • B. Sarkar, B. Mridha and S. Pareek, A sustainable smart multi-type biofuel manufacturing with the optimum energy utilization under flexible production. J. Clean. Prod. 332 (2022) 129869. [CrossRef] [Google Scholar]
  • A. Sepehri, U. Mishra, M.-L. Tseng and B. Sarkar, Joint Pricing and Inventory Model for Deteriorating Items with Maximum Lifetime and Controllable Carbon Emissions under Permissible Delay in Payments. Mathematics 9 (2021) 470. [CrossRef] [Google Scholar]
  • S. Tiwari, Y. Daryanto and H.M. Wee, Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. J. Clean. Prod. 192 (2018) 281–292. [Google Scholar]
  • M. Ullah, I. Asghar, M. Zahid, M. Omair, A. AlArjani and B. Sarkar, Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products. J. Clean. Prod. 290 (2021) 125609. [CrossRef] [Google Scholar]
  • X. Wang, Y. Zhu, H. Sun and F. Jia, Production decisions of new and remanufactured products: implications for low carbon emission economy. J. Clean. Prod. 171 (2018) 1225–1243. [CrossRef] [Google Scholar]
  • B. Wu and L. Cui, Reliability analysis of periodically inspected systems with competing risks under Markovian environments. Comp. Ind. Eng. 158 (2021) 107415. [CrossRef] [Google Scholar]
  • D. Yadav, R. Kumari, N. Kumar and B. Sarkar, Reduction of waste and carbon emission through the selection of items with cross-price elasticity of demand to form a sustainable supply chain with preservation technology. J. Clean. Prod. 297 (2021) 126298. [CrossRef] [Google Scholar]
  • H. Zhu, H.H. Goh, D. Zhang, T. Ahmad, H. Liu, S. Wang, S. Li, T. Liu, H. Dai and T. Wu, Key technologies for smart energy systems: Recent developments, challenges, and research opportunities in the context of carbon neutrality. J. Clean. Prod. 331 (2022) 129809. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.