Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1593 - 1622
DOI https://doi.org/10.1051/ro/2022017
Published online 30 June 2022
  • S.P. Aggarwal and C.K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res. Soc. 46 (1995) 658–662. [Google Scholar]
  • H.K. Alfares and A.M. Ghaithan, Inventory and pricing model with price-dependent demand, time-varying holding cost, and quantity discounts. Comput. Ind. Eng. 94 (2016) 170–177. [Google Scholar]
  • C.T. Chang, L.Y. Ouyang and J.T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Appl. Math. Modell. 27 (2003) 983–996. [CrossRef] [Google Scholar]
  • C.T. Chang, M.C. Cheng and L.Y. Ouyang, Optimal pricing and ordering policies for non-instantaneously deteriorating items under order-size-dependent delay in payments. Appl. Math. Modell. 39 (2015) 747–763. [CrossRef] [MathSciNet] [Google Scholar]
  • S.C. Chen, L.E. Cárdenas-Barrón and J.T. Teng, Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. Int. J. Prod. Econ. 155 (2014) 284–291. [Google Scholar]
  • Y.S. Chiu, S.C. Liu, C.L. Chiu and H.H. Chang, Mathematical modeling for determining the replenishment policy for EMQ model with rework and multiple shipments. Math. Comput. Modell. 54 (2011) 2165–2174. [CrossRef] [Google Scholar]
  • K.J. Chung and J.J. Liao, The optimal ordering policy of the EOQ model under trade credit depending on the ordering quantity from the DCF approach. Eur. J. Oper. Res. 196 (2009) 563–568. [CrossRef] [Google Scholar]
  • K.J. Chung, S.D. Lin and H.M. Srivastava, The inventory models under conditional trade credit in a supply chain system. Appl. Math. Modell. 37 (2013) 10036–10052. [CrossRef] [Google Scholar]
  • S.K. Goyal, Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36 (1985) 335–338. [Google Scholar]
  • Y.F. Huang, Economic order quantity under conditionally permissible delay in payments. Eur. J. Oper. Res. 176 (2007) 911–924. [Google Scholar]
  • C.K. Jaggi, S. Pareek, A. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages. Appl. Math. Modell. 38 (2014) 5315–5333. [CrossRef] [Google Scholar]
  • A.M.M. Jamal, B.R. Sarker and S. Wang, An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. J. Oper. Res. Soc. 48 (1997) 826–833. [Google Scholar]
  • P.N. Joglekar, Comments on “A quantity discount pricing model to increase vendor profits”. Manage. Sci. 34 (1988) 1391–1398. [CrossRef] [Google Scholar]
  • S. Khanra, S.K. Ghosh and K.S. Chaudhuri, An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment. Appl. Math. Comput. 218 (2011) 1–9. [Google Scholar]
  • S. Khanra, B. Mandal and B. Sarkar, An inventory model with time dependent demand and shortages under trade credit policy. Econ. Modell. 35 (2013) 349–355. [CrossRef] [Google Scholar]
  • S. Khanra, B. Mandal and B. Sarkar, A comparative study between inventory followed by shortages and shortages followed by inventory under trade-credit policy. Int. J. Appl. Comput. Math. 1 (2015) 399–426. [Google Scholar]
  • M. Khouja, The economic production lot size model under volume flexibility. Comput. Oper. Res. 22 (1995) 515–523. [CrossRef] [Google Scholar]
  • M. Khouja and A. Mehrez, Optimal inventory policy under different supplier credits. J. Manuf. Syst. 15 (1996) 334–339. [CrossRef] [Google Scholar]
  • M. Lashgari, A.A. Taleizadeh and S.J. Sadjadi, Ordering policies for non-instantaneous deteriorating items under hybrid partial prepayment, partial trade credit and partial backordering. J. Oper. Res. Soc. 69 (2018) 1167–1196. [Google Scholar]
  • L.Y. Ouyang, C.H. Ho and C.H. Su, Optimal strategy for an integrated system with variable production rate when the freight rate and trade credit are both linked to the order quantity. Int. J. Prod. Econ. 115 (2008) 151–162. [CrossRef] [Google Scholar]
  • L.Y. Ouyang, C.H. Ho and C.H. Su, An optimization approach for joint pricing and ordering problem in an integrated inventory system with order-size dependent trade credit. Comput. Ind. Eng. 57 (2009) 920–930. [CrossRef] [Google Scholar]
  • L.Y. Ouyang, J.T. Teng, S.K. Goyal and C.T. Yang, An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity. Eur. J. Oper. Res. 194 (2009) 418–431. [CrossRef] [Google Scholar]
  • L.Y. Ouyang, C.H. Ho, C.H. Su and C.T. Yang, An integrated inventory model with capacity constraint and order-size dependent trade credit. Comput. Ind. Eng. 84 (2015) 133–143. [Google Scholar]
  • J. Ray, A nonlinear EOQ model with the effect of trade credit. Int. J. Nonlin. Sci. Num. 17 (2014) 135–144. [Google Scholar]
  • S.S. Sana and K.S. Chaudhuri, A deterministic EOQ model with delays in payments and price-discount offers. Eur. J. Oper. Res. 184 (2008) 509–533. [Google Scholar]
  • B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Modell. 55 (2012) 367–377. [CrossRef] [Google Scholar]
  • D. Seifert, R.W. Seifert and M. Protopappa-Sieke, A review of trade credit literature: opportunities for research in operations. Eur. J. Oper. Res. 231 (2013) 245–256. [Google Scholar]
  • N.H. Shah and L.E. Cárdenas-Barrón, Retailer’s decision for ordering and credit policies for deteriorating items when a supplier offers order-linked credit period or cash discount. Appl. Math. Comput. 259 (2015) 569–578. [Google Scholar]
  • A.A. Shaikh, M.A.A. Khan, G.C. Panda and I. Konstantaras, Price discount facility in an EOQ model for deteriorating items with stock-dependent demand and partial backlogging. Int. Trans. Oper. Res. 26 (2019) 1365–1395. [CrossRef] [MathSciNet] [Google Scholar]
  • S.W. Shinn and H. Hwang, Optimal pricing and ordering policies for retailers under order-size-dependent delay in payments. Comput. Oper. Res. 30 (2003) 35–50. [Google Scholar]
  • A.A. Taleizadeh and D.W. Pentico, An economic order quantity model with partial backordering and all-units discount. Int. J. Prod. Econ. 155 (2014) 172–184. [CrossRef] [Google Scholar]
  • P.S. Ting, Comments on the EOQ model for deteriorating items with conditional trade credit linked to order quantity in the supply chain management. Eur. J. Oper. Res. 246 (2015) 108–118. [CrossRef] [Google Scholar]
  • S. Tiwari, L.E. Cárdenas-Barrón, A.A. Shaikh and M. Goh, Retailer’s optimal ordering policy for deteriorating items under order-size dependent trade credit and complete backlogging. Comput. Ind. Eng. 139 (2020) 1–12. [Google Scholar]
  • H.L. Yang and C.T. Chang, A two-warehouse partial backlogging inventory model for deteriorating items with permissible delay in payment under inflation. Appl. Math. Modell. 37 (2013) 2717–2726. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.