Open Access
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1571 - 1591
Published online 30 June 2022
  • A. Amirteimoori and S. Kordrostami, Multi-period efficiency analysis in data envelopment analysis. Int. J. Math. Oper. Res. 2 (2010) 113–128. [CrossRef] [MathSciNet] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 32 (1984) 18–70. [Google Scholar]
  • W. Briec and K. Kerstens, Multi-horizon Markowitz portfolio performance appraisals: a general approach. Omega 37 (2009) 50–62. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen, W.D. Cook, C. Kao and J. Zhu, Network DEA pitfalls: divisional efficiency and frontier projection. Eur. J. Oper. Res. 226 (2014) 507–515. [Google Scholar]
  • L. Chen, F. Lai, Y.M. Wang, Y. Huang and F.M. Wu, A two-stage network data envelopment analysis approach for measuring and decomposing environmental efficiency. Comput. Ind. Eng. 119 (2018) 388–403. [CrossRef] [Google Scholar]
  • W.D. Cook, J. Zhu, G.B. Bi and F. Yang, Network DEA: additive efficiency decomposition. Eur. J. Oper. Res. 207 (2010) 1122–1129. [CrossRef] [Google Scholar]
  • W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Springer, New York (2007). [Google Scholar]
  • D.K. Despotis, G. Koronakos and D. Sotiros, The “weak-link” approach to network DEA for two-stage processes. Eur. J. Oper. Res. 254 (2016) 481–492. [CrossRef] [Google Scholar]
  • A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Plan. Sci. 61 (2017) 4–8. [Google Scholar]
  • A. Esmaeilzadeh and R. Kazmi Matin, Multi-period efficiency measurement of network production systems. Measurement 134 (2019) 835–844. [CrossRef] [Google Scholar]
  • R. Färe and S. Grosskopf, Productivity and intermediate products: a frontier approach. Econ. Lett. 50 (1996) 65–70. [CrossRef] [Google Scholar]
  • R. Färe and S. Grosskopf, Network DEA. Soc. Econ. Plan. Sci. 34 (2000) 35–49. [CrossRef] [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. Ser. A Gen. 120 (1957) 253–281. [CrossRef] [Google Scholar]
  • B. Golany, S.T. Hackman and U. Passy, An efficiency measurement framework for multi-stage production systems. Ann. Oper. Res. 145 (2006) 51–68. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Hadi-Vencheh and R. Kazemi Matin, An application of IDEA to wheat farming efficiency. Agric. Econ. 42 (2011) 487–493. [CrossRef] [Google Scholar]
  • D. Holod and H.F. Lewis, Resolving the deposit dilemma: a new DEA bank efficiency model. J. Banking Finance 35 (2011) 2801–2810. [Google Scholar]
  • J. Jablonsky, Efficiency analysis in multi-period systems: an application to performance evaluation in Czech higher education. Cent. Eur. J. Oper. Res. 24 (2016) 283–296. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kaffash, R. Azizi, Y. Huang and J. Zhu, A survey of data envelopment analysis applications in the insurance industry 1993–2018. Eur. J. Oper. Res. 248 (2019) 801–813. [Google Scholar]
  • C. Kao, Efficiency decomposition in network data envelopment analysis: a relational model. Eur. J. Oper. Res. 192 (2009) 949–962. [CrossRef] [Google Scholar]
  • C. Kao, Efficiency measurement for parallel production systems. Eur. J. Oper. Res. 196 (2009) 1107–1112. [Google Scholar]
  • C. Kao, Efficiency decomposition for general multi-stage systems in data envelopment analysis. Eur. J. Oper. Res. 232 (2014) 117–124. [Google Scholar]
  • C. Kao, Inefficiency identification for closed series production systems. Eur. J. Oper. Res. 275 (2019) 599–607. [CrossRef] [Google Scholar]
  • C. Kao, S.N. Hwang, Efficiency measurement for network systems: IT impact on firm performance. Decis. Support Syst. 48 (2010) 437–446. [CrossRef] [Google Scholar]
  • C. Kao and S.T. Liu, Multi-period efficiency measurement in data envelopment analysis: the case of Taiwanese commercial banks. Omega 47 (2014) 90–98. [Google Scholar]
  • R. Kazemi Matin, G.R. Jahanshahloo and A.H. Vencheh, Inefficiency evaluation with an additive DEA model under imprecise data, an application on IAUK departments. J. Oper. Res. Soc. Jpn. 50 (2007) 163–177. [Google Scholar]
  • K. Kerstens, P. Mazza, T. Ren and I. Van de Woestyne, Multi-Time and Multi-Moment Nonparametric Frontier-Based Fund Rating: Proposal and Buy-and-Hold Backtesting Strategy (No. 2021-EQM-03) (2021). [Google Scholar]
  • M. Khoveyni, H. Fukuyama, R. Eslami and G.L. Yang, Variations effect of intermediate products on the second stage in two-stage processes. Omega 85 (2019) 35–48. [CrossRef] [Google Scholar]
  • S. Kordrostami and M. Jahani Sayyed Noveiri, Evaluating the efficiency of firms with negative data in multi-period systems: an application to bank data. Int. J. Ind. Math. 9 (2017) 27–35. [Google Scholar]
  • H. Lewis and T. Sexton, Network DEA: efficiency analysis of organizations with complex internal structure. Comput. Oper. Res. 31 (2004) 1365–1410. [CrossRef] [Google Scholar]
  • S. Lim and J. Zhu, Primal-dual correspondence and frontier projections in two-stage network DEA models. Omega 83 (2019) 236–248. [CrossRef] [Google Scholar]
  • J.S. Liu and W.M. Lu, Network-based method for ranking of efficient units in two-stage DEA models. J. Oper. Res. Soc. 63 (2012) 1153–1164. [CrossRef] [Google Scholar]
  • M.R. Morey and R.C. Morey, Mutual fund performance appraisals: a multi-horizon perspective with endogenous benchmarking. Omega 27 (1999) 241–258. [Google Scholar]
  • J. Nemoto and M. Goto, Measuring dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities. J. Prod. Anal. 19 (2003) 191–210. [CrossRef] [Google Scholar]
  • O. Özpeynici and M. Köksalan, Performance evaluation using data envelopment analysis in the presence of time lags. J. Prod. Anal. 27 (2007) 221–229. [CrossRef] [Google Scholar]
  • K.S. Park and K. Park, Measurement of multi period aggregative efficiency. Eur. J. Oper. Res. 193 (2009) 567–80. [CrossRef] [Google Scholar]
  • S.H. Razavi Hajiagha, S.S. Hashemi, H. Amoozed Mahdiraji and J. Azaddel, Multi-period data envelopment analysis based on Chebyshev inequality bounds. Expert Syst. App. 42 (2015) 7759–7767. [CrossRef] [Google Scholar]
  • T. Ren, Z. Zhou and H. Xiao, Estimation of portfolio efficiency considering social responsibility: evidence from the multi-horizon diversification DEA. RAIRO: Oper. Res. 55 (2021) 611–637. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • L.M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks. Manage. Sci. 45 (1999) 1270–1288. [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.