RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Recent developments of operations research and data sciences
Page(s) 1553 - 1569
Published online 30 June 2022
  • L. Afraites, A. Hadri, A. Laghrib and M. Nachaoui, A weighted parameter identification pde-constrained optimization for inverse image denoising problem. The Visual Computer (2021) 1–16. DOI: 10.1007/s00371-021-02162-x. [Google Scholar]
  • L. Afraites, C. Masnaoui and M. Nachaoui, Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  • K.A. Berdawood, A. Nachaoui, M. Nachaoui and F. Aboud, An effective relaxed alternating procedure for cauchy problem connected with helmholtz equation. Numer. Methods Part. Differ. Equ. (2021). DOI: 10.1002/num.22793. [Google Scholar]
  • G. Bocharov and A. Romanyukha, Mathematical modeling of the immune response during acute viral infections. In: Theoretical and Experimental Insights into Immunology. Springer (1992) 309–321. [CrossRef] [Google Scholar]
  • G. Bocharov and A. Romanyukha, Numerical treatment of the parameter identification problem for delay-differential systems arising in immune response modelling. Appl. Numer. Math. 15 (1994) 307–326. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Chakib, A. Nachaoui and M. Nachaoui, Finite element approximation of an optimal design problem. J. Appl. Comput. Math. 11 (2012) 19–26. [Google Scholar]
  • A. Chakib, A. Ellabib, A. Nachaoui and M. Nachaoui, A shape optimization formulation of weld pool determination. Appl. Math. Lett. 25 (2012) 374–379. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Chakib, A. Nachaoui and M. Nachaoui, Approximation and numerical realization of an optimal design welding problem. Numer. Methods Part. Differ. Equ. 29 (2013) 1563–1586. [CrossRef] [Google Scholar]
  • P. Dvalishvili, A. Nachaoui and T. Tadumadze, Effects of the initial moment and several delays perturbations in the variation formulas for a solution of a functional differential equation with the continuous initial condition. Georgian Math. J. 27 (2020) 53–66. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Eastman, J. Sass, J.M. Gomes, R.W. Dos Santos and E.M. Cherry, Using delay differential equations to induce alternans in a model of cardiac electrophysiology, J. Theor. Biol. 404 (2016) 262–272. [CrossRef] [Google Scholar]
  • J.E. Forde Delay differential equation models in mathematical biology. Ph.D thesis, University of Michigan, ProQuest LLC, Ann Arbor, MI (2005). [Google Scholar]
  • R.V. Gamkrelidze and G.L. Karatishvili, Extremal problems in linear topological spaces. Math. Syst. Theory 1 (1967) 229–256. [CrossRef] [Google Scholar]
  • J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, New York (1953). [Google Scholar]
  • J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. MIT Press (1992). [Google Scholar]
  • M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of wolbachia driven aedes mosquito suppression by delay differential equations. J. Theor. Biol. 440 (2018) 1–11. [CrossRef] [Google Scholar]
  • J. Kepner, Parallel programming with MatlabMPI. Preprint astro-ph/0107406 (2001). [Google Scholar]
  • G.L. Kharatishvili and T.A. Tadumadze, Formulas for the Variation of a Solution and Optimal Control Problems for Differential Equations with Retarded Arguments. J. Math. Sci. (NY) 140 (2007) 1–175. [CrossRef] [Google Scholar]
  • S. Lenhart, V. Protopopescu and J. Yong, Solving inverse problems of identification type by optimal control methods. I: AIP Conference Proceedings. Vol. 411.American Institute of Physics (1997) 87–94. [Google Scholar]
  • M. Nachaoui, Étude théorique et approximation numérique d’un problème inverse de transfert de la chaleur. Ph.D. thesis, Université de Nantes (2011). [Google Scholar]
  • M. Nachaoui, Parameter learning for combined first and second order total variation for image reconstruction. Adv. Math. Models App. 5 (2020) 53–69. [Google Scholar]
  • A. Nachaoui, J. Abouchabaka and N. Rafalia, Parallel solvers for the depletion region identification in metal semiconductor field effect transistors. Numer. Algorithms 40 (2005) 187–199. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Nachaoui, A. Chakib and A. Nachaoui, An efficient evolutionary algorithm for a shape optimization problem. Appl. Comput. Math. 19 (2020) 220–244. [MathSciNet] [Google Scholar]
  • M. Nachaoui, L. Afraites and A. Laghrib, A regularization by denoising super-resolution method based on genetic algorithms. Signal Process. Image Commun. 99 (2021) 116505. [CrossRef] [Google Scholar]
  • A. Nachaoui, M. Nachaoui and B. Gasimov, Parallel numerical computation of an analytical method for solving an inverse problem. Adv. Math. Models App. 6 (2021) 162–173. [Google Scholar]
  • J.T. Ottesen, Modelling of the baroreflex-feedback mechanism with time-delay. J. Math. Biol. 36 (1997) 41–63. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • A.A. Samarskii and P.N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics. Vol. 52 of Inverse and Ill-posed Problems Series. Walter de Gruyter GmbH & Co. KG, Berlin (2007). [Google Scholar]
  • L.F. Shampine and S. Thompson, Solving DDEs in matlab. Appl. Numer. Math. 37 (2001) 441–458. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Tadumadze and A. Nachaoui, Variation formulas of solution for a controlled functional-differential equation considering delay perturbation. TWMS J. Appl. Eng. Math. 1 (2011) 58–68. [MathSciNet] [Google Scholar]
  • T. Tadumadze, A. Nachaoui and F. Aboud, On one inverse problem for the linear controlled neutral differential equation. In: Qualitative Theory of Differential Equations QUALITDE–2018 (2018) 183–184. [Google Scholar]
  • L. Tavernini, Continuous-Time Modeling and Simulation. Vol. 2, CRC Press (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.