Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1453 - 1490
DOI https://doi.org/10.1051/ro/2022059
Published online 13 June 2022
  • K.J. Arrow, T. Harris and J. Marschak, Optimal inventory policy. Econometrica 19 (1951) 250–272. [Google Scholar]
  • K.J. Arrow, S. Karlin and H. Scarf (editors), Studies in the Mathematical Theory of Inventory and Production. Stanford University Press, Stanford, CA (1958). [Google Scholar]
  • J.A. Bather, A continuous time inventory model. J. Appl. Probab. 3 (1966) 538–549. [CrossRef] [Google Scholar]
  • S. Benjaafar, D. Chen and Y. Yu, Optimal policies for inventory systems with concave ordering costs. Nav. Res. Logistics 65 (2018) 291–302. [CrossRef] [Google Scholar]
  • L. Benkherouf and B.H. Gilding, Optimal policies for a deterministic continuous-time inventory model with several suppliers. RAIRO: Oper. Res. 55 (2021) S947–S966. [CrossRef] [EDP Sciences] [Google Scholar]
  • L. Benkherouf and B.H. Gilding, Optimal policies for a deterministic continuous-time inventory model with several suppliers: a hyper-generalized (s, S) policy. RAIRO: Oper. Res. 55 (2021) 1841–1863. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • L. Benkherouf and M. Johnson, Optimality of (s, S) policies for jump inventory models. Math. Methods Oper. Res. 76 (2012) 377–393. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Bensoussan, Dynamic Programming and Inventory Control. IOS Press, Amsterdam (2011). [Google Scholar]
  • C.W. Churchman, R.L. Ackoff and E.L. Arnoff, Introduction to Operations Research. John Wiley & Sons, New York (1957). [Google Scholar]
  • G.W. Dickson, An analysis of vendor selection systems and decisions. J. Purchasing 2 (1966) 5–17. [Google Scholar]
  • E.J. Fox, R. Metters and J. Semple, Optimal inventory policies with two suppliers. Oper. Res. 54 (2006) 389–393. [CrossRef] [Google Scholar]
  • S.K. Goyal and B.C. Giri, Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134 (2001) 1–16. [Google Scholar]
  • G. Hadley and T.M. Whitin, Analysis of Inventory Systems. Prentice-Hall, Englewood Cliffs, NJ (1963). [Google Scholar]
  • S. He, D. Yao and H. Zhang, Optimal ordering policy for inventory systems with quantity-dependent setup costs. Math. Oper. Res. 42 (2017) 979–1006. [CrossRef] [MathSciNet] [Google Scholar]
  • M.A. Helal, A. Bensoussan, V. Ramakrishna and S.P. Sethi, A mathematical model for optimal inventory policies with backlog sales. Int. J. Traffic Transp. Eng. 11 (2021) 323–340. [CrossRef] [Google Scholar]
  • K.L. Helmes, R.H. Stockbridge and C. Zhu, A measure approach for continuous inventory models: discounted cost criterion. SIAM J. Control Optim. 53 (2015) 2100–2140. [Google Scholar]
  • K.L. Helmes, R.H. Stockbridge and C. Zhu, Continuous inventory models of diffusion type: long-term average cost criterion. Ann. Appl. Probab. 27 (2017) 1831–1885. [Google Scholar]
  • K.L. Helmes, R.H. Stockbridge and C. Zhu, A weak convergence approach to inventory control using a long-term average criterion. Adv. Appl. Probab. 50 (2018) 1032–1074. [Google Scholar]
  • F.S. Hillier and G.J. Lieberman, Introduction to Operations Research. Holden-Day, San Francisco (1967). [Google Scholar]
  • D.L. Iglehart, Optimality of (s, S) policies in the infinite horizon dynamic inventory problem. Manage. Sci. 9 (1963) 259–267. [CrossRef] [Google Scholar]
  • J. Liu, K.F.C. Yiu and A. Bensoussan, Optimal inventory control with jump diffusion and nonlinear dynamics in the demand. SIAM J. Control Optim. 56 (2018) 53–74. [Google Scholar]
  • S. Minner, Multiple-supplier inventory models in supply chain management: a review. Int. J. Prod. Econ. 81–82 (2003) 265–279. [CrossRef] [Google Scholar]
  • E. Naddor, Inventory Systems. John Wiley & Sons, New York (1966). [Google Scholar]
  • S. Perera, G. Janakiraman and S.-C. Niu, Optimality of (s, S) policies in EOQ models with general cost structures. Int. J. Prod. Econ. 187 (2017) 216–228. [CrossRef] [Google Scholar]
  • S. Perera, G. Janakiraman and S.-C. Niu, Optimality of (s, S) inventory policies under renewal demand and general cost structures. Prod. Oper. Manage. 27 (2018) 368–383. [CrossRef] [Google Scholar]
  • E.L. Porteus, On the optimality of generalized (s, S) policies. Manage. Sci. 17 (1971) 411–426. [Google Scholar]
  • E.L. Porteus, The optimality of generalized (s, S) policies under uniform demand densities. Manage. Sci. 18 (1972) 644–646. [Google Scholar]
  • E.L. Porteus, Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, CA (2002). [Google Scholar]
  • P.A. Samuelson, A note on measurement of utility. Rev. Econ. Stud. 4 (1937) 155–161. [CrossRef] [Google Scholar]
  • M. Sasieni, A. Yaspan and L. Friedman, Operations Research Methods and Problems. John Wiley & Sons, New York, (1959). [Google Scholar]
  • H. Scarf, The optimality of (S, s) policies in the dynamic inventory problem. In: Mathematical Methods in the Social Sciences 1959, edited by K.J. Arrow, S. Karlin and P. Suppes. Stanford University Press, Stanford, CA (1960) 196–202. [Google Scholar]
  • A. Sulem, A solvable one-dimensional model of a diffusion inventory system. Math. Oper. Res. 11 (1986) 125–133. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Svoboda, S. Minner and M. Yao, Typology and literature review on multiple supplier inventory control models. Eur. J. Oper. Res. 293 (2021) 1–23. [CrossRef] [Google Scholar]
  • T.L. Urban, Inventory models with inventory-level-dependent demand: a comprehensive review and unifying theory. Eur. J. Oper. Res. 162 (2005) 792–804. [Google Scholar]
  • A.F. Veinott, On the optimality of (s, S) inventory policies: new conditions and a new proof. SIAM J. Appl. Math. 14 (1966) 1067–1083. [Google Scholar]
  • C.A. Weber, J.R. Current and W.C. Benton, Vendor selection criteria and methods. Eur. J. Oper. Res. 50 (1991) 2–18. [CrossRef] [Google Scholar]
  • F. Xu, D. Yao and H. Zhang, Impulse control with discontinuous setup costs: discounted cost criterion. SIAM J. Control Optim. 59 (2021) 267–295. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Yao, X. Chao and J. Wu, Optimal control policy for a Brownian inventory system with concave ordering cost. J. Appl. Probab. 52 (2015) 909–925. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Yao, X. Chao and J. Wu, Optimal policies for Brownian inventory systems with a piecewise linear ordering cost. IEEE Trans. Autom. Control 62 (2017) 3235–3248. [Google Scholar]
  • E. Zabel, A note on the optimality of (S, s) policies in inventory theory. Manage. Sci. 9 (1962) 123–125. [CrossRef] [Google Scholar]
  • P.H. Zipkin, Foundations of Inventory Management. McGraw–Hill, Boston, MA, (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.