Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1685 - 1716
DOI https://doi.org/10.1051/ro/2022082
Published online 30 June 2022
  • R.A. Abbaspour and F. Samadzadegan, Time-dependent personal tour planning and scheduling in metropolises. Expert Syst. App. 38 (2011) 12439–12452. [CrossRef] [Google Scholar]
  • F. Ahmadimanesh, M.M. Paydar and E. Asadi-Gangraj, Designing a mathematical model for dental tourism supply chain. Tourism Manage. 75 (2019) 404–417. [CrossRef] [Google Scholar]
  • B. Akbarzadeh, G. Moslehi, M. Reisi-Nafchi and B. Maenhout, The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling. Eur. J. Oper. Res. 278 (2019) 596–614. [CrossRef] [Google Scholar]
  • E. Angelelli, C. Archetti, C. Filippi and M. Vindigni, The probabilistic orienteering problem. Comput. Oper. Res. 81 (2017) 269–281. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Asghari and S.M.J. Mirzapour Al-e-Hashem, A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources. Transp. Res. Part E: Logistics Transp. Rev. 134 (2020) 101815. [CrossRef] [Google Scholar]
  • M. Asghari, S.M.J. Mirzapour Al-e-Hashem and Y. Rekik, Environmental and social implications of incorporating carpooling service on a customized bus system. Comput. Oper. Res. 142 (2022) 105724. [CrossRef] [Google Scholar]
  • A. Azadeh, M.H. Kolaee and M. Sheikhalishahi, An integrated approach for configuration optimization in a CBM system by considering fatigue effects. Int. J. Adv. Manuf. Technol. 86 (2016) 1881–1893. [CrossRef] [Google Scholar]
  • D. Bell, R. Holliday, M. Ormond and T. Mainil, Transnational healthcare, cross-border perspectives. Soc. Sci. Med. 124 (2015) 284–289. [CrossRef] [Google Scholar]
  • J.R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer Science & Business Media, NewYork (2011). [CrossRef] [Google Scholar]
  • Á.S. Bjarnadóttir, Solving the Vehicle Routing Problem with Genetic Algorithms. Informatics and Mathematical Modelling. Technical University of Denmark, Informatics and Mathematical Modelling (2004). [Google Scholar]
  • C.N. Buzinde and C. Yarnal, Therapeutic landscapes and postcolonial theory: a theoretical approach to medical tourism. Soc. Sci. Med. 74 (2012) 783–787. [CrossRef] [Google Scholar]
  • F. Carrabs, A biased random-key genetic algorithm for the set orienteering problem. Eur. J. Oper. Res. 292 (2021) 830–854. [CrossRef] [Google Scholar]
  • P. Carrera and N. Lunt, A European perspective on medical tourism: the need for a knowledge base. Int. J. Health Ser. 40 (2010) 469–484. [CrossRef] [PubMed] [Google Scholar]
  • S. Chaulagain, M.F. Jahromi and X. Fu, Americans’ intention to visit Cuba as a medical tourism destination: a destination and country image perspective. Tourism Manage. Perspect. 40 (2021) 100900. [CrossRef] [Google Scholar]
  • P.T. Chen, R.H. Kung, M.Y. Huang, F.D. Chen and L. Pei, Exploring the medical tourism development barriers and participation willingness in Taiwan: an example of mainland tourist. In: Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology. Vol. 68 (2012). [Google Scholar]
  • Y.T. Chew and A. Darmasaputra, 12 Identifying research gaps in medical tourism. In: Destination Marketing: An International Perspective. Vol. 119 (2015). [Google Scholar]
  • E.C.E. Cohen, Medical tourism in Thailand. AU-GSB e-J. 1 (2008) http://www.assumptionjournal.au.edu/index.php/AU-GSB/article/view/381. [Google Scholar]
  • J. Connell, Medical Tourism. CAB International, Wallingford, Oxfordshire, (2011). [CrossRef] [Google Scholar]
  • P.R.D.O. Da Costa, S. Mauceri, P. Carroll and F. Pallonetto, A genetic algorithm for a green vehicle routing problem. Electron. Notes Discrete Math. 64 (2018) 65–74. [CrossRef] [Google Scholar]
  • G. D’Angelo, R. Pilla, C. Tascini and S. Rampone, A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees. Soft Comput. 23 (2019) 11775–11791. [CrossRef] [Google Scholar]
  • J. Dréo, A. Pétrowski, P. Siarry and E. Taillard, Meta-Heuristics for Hard Optimization: Methods and Case Studies. Springer Science & Business Media (2006). [Google Scholar]
  • M.A. Dulebenets, An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 565 (2021) 390–421. [CrossRef] [Google Scholar]
  • M.A. Dulebenets, J. Pasha, O.F. Abioye, M. Kavoosi, E.E. Ozguven, R. Moses, W. Boot and T. Sando, Exact and heuristic solution algorithms for efficient emergency evacuation in areas with vulnerable populations. Int. J. Disaster Risk Reduction 39 (2019) 101114. [CrossRef] [Google Scholar]
  • O. El-Said and H. Aziz, Virtual tours a means to an end: an analysis of virtual tours’ role in tourism recovery post COVID-19. J. Travel Res. 61 (2022) 528–548. [CrossRef] [Google Scholar]
  • G. Erdoğan, J.F. Cordeau and G. Laporte, The attractive traveling salesman problem. Eur. J. Oper. Res. 203 (2010) 59–69. [CrossRef] [Google Scholar]
  • L. Evers, K. Glorie, S. Van Der Ster, A.I. Barros and H. Monsuur, A two-stage approach to the orienteering problem with stochastic weights. Comput. Oper. Res. 43 (2014) 248–260. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Farghadani-Chaharsooghi, P. Kamranfar, S.M.J. Mirzapour Al-e-Hashem and Y. Rekik, A joint production-workforce-delivery stochastic planning problem for perishable items. Int. J. Prod. Res. (2021). DOI: 10.1080/00207543.2021.1985736. [Google Scholar]
  • A.M. Fathollahi-Fard, M.A. Dulebenets, M. Hajiaghaei-Keshteli, R. Tavakkoli-Moghaddam, M. Safaeian and H. Mirzahosseinian, Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty. Adv. Eng. Inf. 50 (2021) 101418. [CrossRef] [Google Scholar]
  • A.M. Fathollahi-Fard, A. Ahmadi and B. Karimi, Sustainable and robust home healthcare logistics: a response to the COVID-19 pandemic. Symmetry 14 (2022) 193. [CrossRef] [Google Scholar]
  • D. Feillet, P. Dejax and M. Gendreau, Traveling salesman problems with profits. Transp. Sci. 39 (2005) 188–205. [CrossRef] [Google Scholar]
  • M. Fetscherin and R.M. Stephano, The medical tourism index: scale development and validation. Tourism Manage. 52 (2016) 539–556. [CrossRef] [Google Scholar]
  • N.K. Freeman, B.B. Keskin and İ. Çapar, Attractive orienteering problem with proximity and timing interactions. Eur. J. Oper. Res. 266 (2018) 354–370. [CrossRef] [Google Scholar]
  • S. Ganguli and A.H. Ebrahim, A qualitative analysis of Singapore’s medical tourism competitiveness. Tourism Manage. Perspect. 21 (2017) 74–84. [CrossRef] [Google Scholar]
  • D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou and N. Vathis, Heuristics for the time dependent team orienteering problem: application to tourist route planning. Comput. Oper. Res. 62 (2015) 36–50. [CrossRef] [MathSciNet] [Google Scholar]
  • R.E. Gonçalves, E.C. Finardi and E.L. da Silva, Applying different decomposition schemes using the progressive hedging algorithm to the operation planning problem of a hydrothermal system. Electr. Power Syst. Res. 83 (2012) 19–27. [CrossRef] [Google Scholar]
  • A. Gunawan, H.C. Lau and P. Vansteenwegen, Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255 (2016) 315–332. [CrossRef] [Google Scholar]
  • H. Han and S.S. Hyun, Customer retention in the medical tourism industry: impact of quality, satisfaction, trust, and price reasonableness. Tourism Manage. 46 (2015) 20–29. [CrossRef] [Google Scholar]
  • V.C. Heung, D. Kucukusta and H. Song, A conceptual model of medical tourism: implications for future research. J. Travel Tourism Marketing 27 (2010) 236–251. [CrossRef] [Google Scholar]
  • V.C. Heung, D. Kucukusta and H. Song, Medical tourism development in Hong Kong: an assessment of the barriers. Tourism Manage. 32 (2011) 995–1005. [CrossRef] [Google Scholar]
  • S. Hudson and X. Li, Domestic medical tourism: a neglected dimension of medical tourism research. J. Hospitality Marketing Manage. 21 (2012) 227–246. [CrossRef] [Google Scholar]
  • M. Jalilvand, M. Bashiri and E. Nikzad, An effective progressive hedging algorithm for the two-layers time window assignment vehicle routing problem in a stochastic environment. Expert Syst. App. 165 (2021) 113877. [CrossRef] [Google Scholar]
  • H. Kim, E. Woo and M. Uysal, Tourism experience and QOL among elderly tourists. Tourism Manage. 46 (2015) 465–476. [CrossRef] [Google Scholar]
  • A.D. Koeshendro, M. Kozak, C.Y. Teng and N. Kozak, Identifying research gaps in medical tourism. In: World Conference for Graduate Research in Tourism, Hospitality and Leisure (2014) 16–21. [Google Scholar]
  • H.K. Lee and Y. Fernando, The antecedents and outcomes of the medical tourism supply chain. Tourism Manage. 46 (2015) 148–157. [CrossRef] [Google Scholar]
  • S.W. Lin and F.Y. Vincent, Solving the team orienteering problem with time windows and mandatory visits by multi-start simulated annealing. Comput. Ind. Eng. 114 (2017) 195–205. [CrossRef] [Google Scholar]
  • Z.Z. Liu, Y. Wang and P.Q. Huang. AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci. 509 (2020) 400–419. [CrossRef] [Google Scholar]
  • B. Lovelock and K. Lovelock, “We had a ball as long as you kept taking your painkillers” just how much tourism is there in medical tourism? Experiences of the patient tourist. Tourism Manage. 69 (2018) 145–154. [CrossRef] [Google Scholar]
  • B. Lovelock, K. Lovelock and K. Lyons, The impact of outbound medical (dental) tourism on the generating region: New Zealand dental professionals’ perspectives. Tourism Manage. 67 (2018) 399–410. [CrossRef] [Google Scholar]
  • A. Majidi, P. Farghadani-Chaharsooghi and S.M.J. Mirzapour Al-e-Hashem, Sustainable pricing-production-workforce-routing problem for perishable products by considering demand uncertainty; a case study from the dairy industry. Transp. J. 61 (2022) 60–102. [CrossRef] [Google Scholar]
  • M. Mazloumian, M.F. Baki and M. Ahmadi, A robust multiobjective integrated master surgery schedule and surgical case assignment model at a publicly funded hospital. Comput. Ind. Eng. 163 (2022) 107826. [CrossRef] [Google Scholar]
  • Medical Tourism Association, Medical tourism FAQ’s. Accessed: 11 February 2017 http://www.medicaltourismassociation.com/en/medical-tourism-faq-s.html (2017). [Google Scholar]
  • S.M.J. Mirzapour Al-e-Hashem, H. Malekly and M.B. Aryanezhad, A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Int. J. Prod. Econ. 134 (2011) 28–42. [Google Scholar]
  • S.M.J. Mirzapour Al-e-Hashem, A. Baboli and Z. Sazvar, A stochastic aggregate production planning model in a green supply chain: considering flexible lead times, nonlinear purchase and shortage cost functions. Eur. J. Oper. Res. 230 (2013) 26–41. [CrossRef] [Google Scholar]
  • K. Momeni, A. Janati, A. Imani and R. Khodayari-Zarnaq, Barriers to the development of medical tourism in East Azerbaijan province, Iran: a qualitative study. Tourism Manage. 69 (2018) 307–316. [CrossRef] [Google Scholar]
  • J. Moosavi, A.M. Fathollahi-Fard and M.A. Dulebenets, Supply chain disruption during the COVID-19 pandemic: recognizing potential disruption management strategies. Int. J. Disaster Risk Reduction 75 (2022) 102983. [CrossRef] [Google Scholar]
  • F. Motevalli-Taher and M.M. Paydar, Supply chain design to tackle coronavirus pandemic crisis by tourism management. Appl. Soft Comput. 104 (2021) 107217. [CrossRef] [Google Scholar]
  • A. Nadizadeh, Formulation and a heuristic approach for the orienteering location-routing problem. RAIRO: Oper. Res. 55 (2021) S2055–S2069. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Ngamvichaikit and R. Beise-Zee, Communication needs of medical tourists: an exploratory study in Thailand. Int. J. Pharm. Healthcare Marketing 8 (2014) 98–117. [CrossRef] [Google Scholar]
  • J. Nossack, Therapy scheduling and therapy planning at hospitals. Omega 109 (2022) 102594. [CrossRef] [Google Scholar]
  • S. Park, S. Hahn, T. Lee and M. Jun, Two factor model of consumer satisfaction: international tourism research. Tourism Manage. 67 (2018) 82–88. [CrossRef] [Google Scholar]
  • H. Park, D. Son, B. Koo and B. Jeong, Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm. Expert Syst. App. 165 (2021) 113959. [CrossRef] [Google Scholar]
  • J. Pasha, M.A. Dulebenets, M. Kavoosi, O.F. Abioye, H. Wang and W. Guo, An optimization model and solution algorithms for the vehicle routing problem with a “factory-in-a-box”. IEEE Access 8 (2020) 134743–134763. [CrossRef] [Google Scholar]
  • G.C. Pflug and A. Pichler, Approximations for probability distributions and stochastic optimization problems. In: Stochastic Optimization Methods in Finance and Energy. Springer, New York, NY (2011) 343–387. [CrossRef] [Google Scholar]
  • S. Rajan, K. Sundar and N. Gautam, Routing problem for unmanned aerial vehicle patrolling missions-a progressive hedging algorithm. Comput. Oper. Res. 142 (2022) 105702. [CrossRef] [Google Scholar]
  • M. Rezaeiahari and M.T. Khasawneh, An optimization model for scheduling patients in destination medical centers. Oper. Res. Health Care 15 (2017) 68–81. [CrossRef] [Google Scholar]
  • M. Rezaeiahari and M.T. Khasawneh, Simulation optimization approach for patient scheduling at destination medical centers. Expert Syst. App. 140 (2020) 112881. [CrossRef] [Google Scholar]
  • J. Ridderstaat, D. Singh and F. DeMicco, The impact of major tourist markets on health tourism spending in the United States. J. Destination Marketing Manage. 11 (2019) 270–280. [CrossRef] [Google Scholar]
  • J. Ruiz-Meza, J. Brito and J.R. Montoya-Torres, A VND to solve the bi-objective tourist trip design problem with fuzzy constraints and reducing CO. In: Computational Intelligence Methodologies Applied to Sustainable Development Goals. Springer, Cham (2022) 221–234. [CrossRef] [Google Scholar]
  • M.A. Salazar-Aguilar, A. Langevin and G. Laporte, The multi-district team orienteering problem. Comput. Oper. Res. 41 (2014) 76–82. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Singh, An evaluation of medical tourism in India. Afr. J. Hospitality Tourism Leisure 3 (2014) 1–11. [Google Scholar]
  • M. Skellern, The Hospital as a multi-product firm: the effect of hospital competition on value-added indicators of clinical quality. CEP discussion paper, The London School of Economics and Political Science (2017). [Google Scholar]
  • L. Skountridaki, The internationalisation of healthcare and business aspirations of medical professionals. Sociology 49 (2015) 471–487. [CrossRef] [Google Scholar]
  • W. Souffriau, P. Vansteenwegen, G. Vanden Berghe and D. Van Oudheusden, The multiconstraint team orienteering problem with multiple time windows. Transp. Sci. 47 (2013) 53–63. [CrossRef] [Google Scholar]
  • R.G. Spece Jr, Medical tourism: protecting patients from conflicts of interest in broker’s fees paid by foreign providers. J. Health Biomed. L. 6 (2010) 1. [Google Scholar]
  • C. Suess, S. Baloglu and J.A. Busser, Perceived impacts of medical tourism development on community wellbeing. Tourism Manage. 69 (2018) 232–245. [CrossRef] [Google Scholar]
  • H. Tang and E. Miller-Hooks, A tabu search heuristic for the team orienteering problem. Comput. Oper. Res. 32 (2005) 1379–1407. [CrossRef] [Google Scholar]
  • H. Tang and E. Miller-Hooks, Algorithms for a stochastic selective travelling salesperson problem. J. Oper. Res. Soc. 56 (2005) 439–452. [CrossRef] [Google Scholar]
  • A. Timajchi, S.M.M. Al-e-Hashem and Y. Rekik, Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option. Int. J. Prod. Econ. 209 (2019) 302–315. [CrossRef] [Google Scholar]
  • P. Vansteenwegen, W. Souffriau, G.V. Berghe and D.V. Oudheusden, The city trip planner: an expert system for tourists. Expert Syst. App. 38 (2011) 6540–6546. [CrossRef] [Google Scholar]
  • P. Vansteenwegen, W. Souffriau and D.V. Oudheusden, The orienteering problem: a survey. Eur. J. Oper. Res. 209 (2011) 1–10. [CrossRef] [Google Scholar]
  • I.B. Vermeulen, S.M. Bohte, S.G. Elkhuizen, H. Lameris, P.J. Bakker and H. La Poutre, Adaptive resource allocation for efficient patient scheduling. Artif. Intell. Med. 46 (2009) 67–80. [CrossRef] [Google Scholar]
  • F.Y. Vincent, P. Jewpanya, S.W. Lin and A.P. Redi, Team orienteering problem with time windows and time-dependent scores. Comput. Ind. Eng. 127 (2019) 213–224. [CrossRef] [Google Scholar]
  • J.Y. Yu and T.G. Ko, A cross-cultural study of perceptions of medical tourism among Chinese, Japanese and Korean tourists in Korea. Tourism Manage. 33 (2012) 80–88. [CrossRef] [Google Scholar]
  • V.F. Yu, P. Jewpanya, C.J. Ting and A.A.N.P. Redi, Two-level particle swarm optimization for the multi-modal team orienteering problem with time windows. Appl. Soft Comput. 61 (2017) 1022–1040. [CrossRef] [Google Scholar]
  • M.F. Yusup, A. Kanyan, J. Kasuma, H. Kamaruddin and J. Adlin, Determinants of factors and the growth of tourism industry in Langkawi Island. J. Sci. Res. Dev. 3 (2016) 13–20. [Google Scholar]
  • B. Zeng and R. Gerritsen, What do we know about social media in tourism?A review. Tourism Manage. Perspect. 10 (2014) 27–36. [CrossRef] [Google Scholar]
  • Y. Zhang and P. Murphy, Supply-chain considerations in marketing underdeveloped regional destinations: a case study of Chinese tourism to the Goldfields region of Victoria. Tourism Manage. 30 (2009) 278–287. [CrossRef] [Google Scholar]
  • Y. Zhang, K.S. Park and H. Song, Tourists’ motivation, place attachment, satisfaction and support behavior for festivals in the migrant region of China. Sustainability 13 (2021) 5210. [CrossRef] [Google Scholar]
  • H. Zhao and C. Zhang, An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 509 (2020) 1–21. [CrossRef] [Google Scholar]
  • W. Zheng and Z. Liao, Using a heuristic approach to design personalized tour routes for heterogeneous tourist groups. Tourism Manage. 72 (2019) 313–325. [CrossRef] [Google Scholar]
  • W. Zheng, H. Ji, C. Lin, W. Wang and B. Yu, Using a heuristic approach to design personalized urban tourism itineraries with hotel selection. Tourism Manage. 76 (2020) 103956. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.