Open Access
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1877 - 1899
Published online 30 June 2022
  • M. Abdel-Basset, A. Gamal, R.K. Chakrabortty and M. Ryan, A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study. J. Clean. Prod. 280 (2021) 124462. [CrossRef] [Google Scholar]
  • A.A.H. Ahmadini, F. Ahmad and Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment. Infin. Study (2021). [Google Scholar]
  • H. Al Garni, A. Kassem, A. Awasthi, D. Komljenovic and K. Al-Haddad, A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustainable Energy Technol. Assess. 16 (2016) 137–150. [CrossRef] [Google Scholar]
  • A. Aly, S.S. Jensen and A.B. Pedersen, Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 113 (2017) 159–175. [CrossRef] [Google Scholar]
  • K.T. Atanassov, Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64 (1994) 159–174. [CrossRef] [Google Scholar]
  • K.T. Atanassov, Intuitionistic fuzzy sets. In: Intuitionistic Fuzzy Sets. Springer (1999) 1–137. [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment. Manage. Sci. 17 (1970) 141–164. [Google Scholar]
  • A. Beskese, A. Camci and G.T. Temur, E. Erturk, Wind turbine evaluation using the hesitant fuzzy AHP-TOPSIS method with a case in Turkey. J. Intell. Fuzzy Syst. 38 (2020) 997–1011. [CrossRef] [Google Scholar]
  • F.E. Boran, S. Genç, M. Kurt and D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. App. 36 (2009) 11363–11368. [CrossRef] [Google Scholar]
  • F. Boran, K. Boran and T. Menlik, The evaluation of renewable energy technologies for electricity generation in Turkey using intuitionistic fuzzy TOPSIS. Energy Sources Part B: Econ. Plan. Policy 7 (2012) 81–90. [CrossRef] [Google Scholar]
  • D. Bouyssou, Building criteria: A prerequisite for MCDA. In: Readings in Multiple Criteria Decision Aid. Springer (1990) 58–80. [CrossRef] [Google Scholar]
  • F. Cavallaro, E.K. Zavadskas and D. Streimikiene, Concentrated solar power (CSP) hybridized systems. Ranking based on an intuitionistic fuzzy multi-criteria algorithm. J. Clean. Prod. 179 (2018) 407–416. [CrossRef] [Google Scholar]
  • R. Chauhan, V. Kumar, T.K. Jana and A. Majumder, A modified customization strategy in a dual-channel supply chain model with price-sensitive stochastic demand and distribution-free approach. Math. Prob. Eng. 2021 (2021). [CrossRef] [Google Scholar]
  • C.T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114 (2000) 1–9. [Google Scholar]
  • B. Daneshvar Rouyendegh, A. Yildizbasi and Ü.Z. Arikan, Using intuitionistic fuzzy TOPSIS in site selection of wind power plants in Turkey. Adv. Fuzzy Syst. 2018 (2018). [Google Scholar]
  • S.K. De, R. Biswas and A.R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117 (2001) 209–213. [CrossRef] [Google Scholar]
  • A. del Moral and F. Petrakopoulou, Evaluation of the coupling of a hybrid power plant with a water generation system. Appl. Sci. 9 (2019) 4989. [CrossRef] [Google Scholar]
  • A. Dhara, G. Kaur, P.M. Kishan, A. Majumder and R. Yadav, An efficient decision support system for selecting very light business jet using CRITIC-TOPSIS method. Aircraft Eng. Aerosp, Technol, 2021. [Google Scholar]
  • H.S. Dhiman and D. Deb, Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms. Energy 202 (2020) 117755. [CrossRef] [Google Scholar]
  • E.U. Ergul and T. Ozbek, Wave energy site and converter selection with multi-criteria decision making: A case study. Proc. Inst. Civil Eng. Energy (2022) 1–35. [Google Scholar]
  • M. Ghram and H. Moalla Frikhahela, ARAS-H: A ranking-based decision aiding method for hierarchically structured criteria. RAIRO: OR 55 (2021). [Google Scholar]
  • Ö. Güler, Wind energy status in electrical energy production of Turkey. Renew. Sustainable Energy Rev. 13 (2009) 473–478. [CrossRef] [Google Scholar]
  • T.N. Hoang, T.T.B. Ly and H.T.T. Do, A hybrid approach of wind farm site selection using Group Best-Worst Method and GIS-Based Fuzzy Logic Relations. A case study in Vietnam. Environ. Qual. Manage. (2022). [Google Scholar]
  • J. Huang, K. Poh and B. Ang, Decision analysis in energy and environmental modeling. Energy 20 (1995) 843–855. [CrossRef] [Google Scholar]
  • C.L. Hwang, Y.J. Lai and T.Y. Liu, A new approach for multiple objective decision making. Comput. Oper. Res. 20 (1993) 889–899. [Google Scholar]
  • J. Jassbi, R.F. Saen, F.H. Lotfi and S.S. Hosseininia, A new hybrid decision making system for supplier selection. RAIRO: OR 50 (2016) 645–664. [CrossRef] [EDP Sciences] [Google Scholar]
  • C. Kahraman, B. Öztayşi, İ.U. Sar and E. Turanoğlu, Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl. Based Syst. 59 (2014) 48–57. [CrossRef] [Google Scholar]
  • G. Kaur, R. Yadav and A. Majumder, An efficient intuitionistic fuzzy approach for location selection to install the most suitable energy power plant. In: Vol. 1531 of Journal of Physics: Conference Series. IOP Publishing (2020) 012057. [CrossRef] [Google Scholar]
  • M. Kilic and I. Kaya, Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Appl. Soft Comput. 27 (2015) 399–410. [CrossRef] [Google Scholar]
  • D.F. Li, Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70 (2005) 73–85. [CrossRef] [Google Scholar]
  • E. Løken, Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustainable Energy Rev. 11 (2007) 1584–1595. [CrossRef] [Google Scholar]
  • A. Lu and W. Ng, Vague sets or intuitionistic fuzzy sets for handling vague data: Which one is better? In: International conference on conceptual modeling Springer (2005) 401–416. [Google Scholar]
  • P. Meier and V. Mubayi, Modelling energy-economic interactions in developing countries: A linear programming approach. Eur. J. Oper. Res. 13 (1983) 41–59. [CrossRef] [Google Scholar]
  • R. Nandra, A. Majumder and M. Mishra, A multi-retailer sustainable supply chain model with information sharing and quality deterioration. RAIRO: OR 55 (2021) S2773–S2794. [CrossRef] [EDP Sciences] [Google Scholar]
  • J. Nixon, P. Dey and P. Davies, The feasibility of hybrid solar-biomass power plants in India. Energy 46 (2012) 541–554. [CrossRef] [Google Scholar]
  • Y. Noorollahi, H. Yousefi and M. Mohammadi, Multicriteria decision support system for wind farm site selection using GIS. Sustainable Energy Technol. Assess. 13 (2016) 38–50. [CrossRef] [Google Scholar]
  • S.C. Onar, B. Oztaysi, İ. Otay and C. Kahraman, Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy 90 (2015) 274–285. [CrossRef] [Google Scholar]
  • S.D. Pohekar and M. Ramachandran, Application of multi-criteria decision making to sustainable energy planning – A review. Renew. Sustainable Energy Rev. 8 (2004) 365–381. [CrossRef] [Google Scholar]
  • S. Pramanik and R. Ravikrishna, A review of concentrated solar power hybrid technologies. Appl. Therm. Eng. 127 (2017) 602–637. [CrossRef] [Google Scholar]
  • T.L. Saaty, Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. Vol. 6. RWS Publications (2000). [Google Scholar]
  • S.A. Sadabadi, A. Hadi-Vencheh, A. Jamshidi and M. Jalali, A linear programming technique to solve fuzzy multiple criteria decision making problems with an application. RAIRO: OR 55 (2021) 83–97. [CrossRef] [EDP Sciences] [Google Scholar]
  • R. Shahraki Shahdabadi, A. Maleki, S. Haghighat and M. Ghalandari, Using multi-criteria decision-making methods to select the best location for the construction of a biomass power plant in Iran. J. Therm. Anal. Calorim. 145 (2021) 2105–2122. [CrossRef] [Google Scholar]
  • E.J. Sheu, A. Mitsos, A.A. Eter, E. Mokheimer, M.A. Habib and A. Al-Qutub, A review of hybrid solar–fossil fuel power generation systems and performance metrics. J. Solar Energy Eng. 134 (2012). [Google Scholar]
  • T. Srinivas and B. Reddy, Hybrid solar–biomass power plant without energy storage. Case Stud. Therm. Eng. 2 (2014) 75–81. [CrossRef] [Google Scholar]
  • E. Szmidt and J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications. In: International conference on computational intelligence. Springer (2001) 148–151. [Google Scholar]
  • S.H. Tsaur, T.Y. Chang and C.H. Yen, The evaluation of airline service quality by fuzzy MCDM. Tour. Manage. 23 (2002) 107–115. [CrossRef] [Google Scholar]
  • S. Türk, A. Koç and G. Şahin, Multi-criteria of PV solar site selection problem using GIS-intuitionistic fuzzy based approach in Erzurum province/Turkey. Sci. Rep. 11 (2021) 1–23. [NASA ADS] [CrossRef] [Google Scholar]
  • C.N. Wang, V.T. Nguyen, H.T.N. Thai and D.H. Duong, Multi-criteria decision making (MCDM) approaches for solar power plant location selection in Viet Nam. Energies 11 (2018) 1504. [CrossRef] [Google Scholar]
  • C.N. Wang, M.H. Hsueh and D.F. Lin, Hydrogen power plant site selection under fuzzy multicriteria decision-making (FMCDM) environment conditions. Symmetry 11 (2019) 596. [CrossRef] [Google Scholar]
  • H.A. Xuan, V.V. Trinh, K. Techato and K. Phoungthong, Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technol. Assess. 52 (2022) 101979. [CrossRef] [Google Scholar]
  • K. Yoon, A reconciliation among discrete compromise solutions. J. Oper. Res. Soc. 38 (1987) 277–286. [Google Scholar]
  • I. Yüksel, Development of hydropower: A case study in developing countries. Energy Sources Part B 2 (2007) 113–121. [CrossRef] [Google Scholar]
  • L. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.