Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2389 - 2401 | |
DOI | https://doi.org/10.1051/ro/2022105 | |
Published online | 01 August 2022 |
- M. Anderson, R.C. Brigham, J.R. Carrington, R.P. Vitray and J. Yellen, On exponential domination of Cm × Cn. AKCE Int. J. Graphs Comb. 6 (2009) 341–351. [MathSciNet] [Google Scholar]
- P. Dankelmann, D. Day, D. Erwin, S. Mukwembi and H. Swart, Domination with exponential decay. Discrete Math. 309 (2009) 5877–5883. [CrossRef] [MathSciNet] [Google Scholar]
- X. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree. Discrete Appl. Math. 159 (2011) 769–773. [CrossRef] [MathSciNet] [Google Scholar]
- W. Goddard, M.A. Henning and C.A. McPillan, The disjunctive domination number of a graph. Quaest. Math. 37 (2014) 547–561. [CrossRef] [MathSciNet] [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998). [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker Inc., New York (1998). [Google Scholar]
- M.A. Henning, Distance domination in graphs, In Domination in Graphs: Advanced Topics, edited by T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Marcel Dekker Inc., New York (1998) 335–365. [Google Scholar]
- M.A. Henning and S.A. Marcon, Domination versus disjunctive domination in trees. Discrete Appl. Math. 184 (2015) 171–177. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Henning and S.A. Marcon, A constructive characterization of trees with equal total domination and disjunctive domination numbers. Quaest. Math. 39 (2016) 531–543. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Henning and S.A. Marcon, Domination versus disjunctive domination in graphs. Quaest. Math. 39 (2016) 261–273. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Henning and S.A. Marcon, Vertices contained in all or in no minimum disjunctive dominating set of a tree. Util. Math. 105 (2017) 95–123. [MathSciNet] [Google Scholar]
- F.P. Jamil and R.P. Malalay, On disjunctive domination in graphs. Quaest. Math. 43 (2020) 149–168. [CrossRef] [MathSciNet] [Google Scholar]
- M. Krzywkowski, An upper bound on the 2-outer independent domination number of a tree. C. R. Math. 349 (2011) 1123–1125. [CrossRef] [Google Scholar]
- M. Krzywkowski, An upper bound for the double outer-independent domination number of a tree. Georgian Math. J. 22 (2015) 105–109. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Li and J. Xu, On the trees with same signed edge and signed star domination number. Int. J. Comput. Math. 95 (2018) 2388–2395. [CrossRef] [MathSciNet] [Google Scholar]
- W. Ning, M. Lu and J. Guo, Bounds on the differentating-total domination number of a tree. Discrete Appl. Math. 200 (2016) 153–160. [CrossRef] [MathSciNet] [Google Scholar]
- W. Ning, M. Lu and K. Wang, Bounding the locating-total domination number of a tree in terms of its annihilation number. Discuss. Math. Graph Theory 39 (2019) 31–40. [CrossRef] [MathSciNet] [Google Scholar]
- B.S. Panda, A. Pandey and S. Paul, Algorithmic aspects of b-disjunctive domination in graphs. J. Comb. Optim. 36 (2018) 572–590. [CrossRef] [MathSciNet] [Google Scholar]
- N.J. Rad and H. Rahbani, Bounds on the locating roman domination number in trees. Discuss. Math. Graph Theory 38 (2018) 49–62. [CrossRef] [MathSciNet] [Google Scholar]
- N.J. Rad and H. Rahbani, Bounds on the locating-domination number and differentating-total domination number in trees. Discuss. Math. Graph Theory 38 (2018) 455–462. [CrossRef] [MathSciNet] [Google Scholar]
- Y.B. Venkatakrishnan and B. Krishnakumari, An improved upper bound of edge-vertex domination number of a tree. Inform. process. Lett. 134 (2018) 14–17. [CrossRef] [MathSciNet] [Google Scholar]
- Y.B. Venkatakrishnan, H.N. Kumar and B. Krishnakumari, Bounds on the double edge-vertex domination number of a tree. Ars Comb. 146 (2019) 29–36. [Google Scholar]
- K. Wang, W. Ning and M. Lu, Bounds on the locating-total domination number in trees. Discuss. Math. Graph Theory 40 (2020) 25–34. [CrossRef] [MathSciNet] [Google Scholar]
- H. Yang, P. Wu and S. Nazari-Moghaddam, Bounds for signed double roman k-domination in trees. RAIRO: RO 53 (2019) 627–643. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.