Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2367 - 2387
DOI https://doi.org/10.1051/ro/2022114
Published online 29 July 2022
  • A. Basso and S. Funari, A data envelopment analysis approach to measure the mutual fund performance. Eur. J. Oper. Res. 135 (2001) 477–492. [Google Scholar]
  • A. Basso and S. Funari, Constant and variable returns to scale DEA models for socially responsible investment funds. Eur. J. Oper. Res. 235 (2014) 775–783. [Google Scholar]
  • A. Basso and S. Funari, The role of fund size in the performance of mutual funds assessed with DEA models. Eur. J. Finan. 23 (2017) 457–473. [CrossRef] [Google Scholar]
  • E. Basso, A. Allevi, F. Bonenti, G. Oggioni and R. Riccardi, Measuring the environmental performance of green SRI funds: a DEA approach. Energy Econ. 79 (2019) 32–44. [CrossRef] [Google Scholar]
  • P. Bonami and M.A. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57 (2009) 650–670. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Cambridge (2004). [Google Scholar]
  • M. Branda, Diversification-consistent data envelopment analysis based on directional-distance measures. Omega 52 (2015) 65–76. [Google Scholar]
  • W. Briec, K. Kerstens and J.B. Lesourd, Single-period Markowitz portfolio selection, performance gauging, and duality: a variation on the Luenberger shortage function. J. Optim. Theory App. 120 (2004) 1–27. [Google Scholar]
  • W. Briec, K. Kerstens and O. Jokung, Mean-variance-skewness portfolio performance gauging: a general shortage function and dual approach. Manage. Sci. 53 (2007) 135–149. [Google Scholar]
  • Z. Chen and R. Lin, Mutual fund performance evaluation using data envelopment analysis with new risk measures. OR Spect. 28 (2006) 375–398. [Google Scholar]
  • W. Chen, Y. Gai and P. Gupta, Efficiency evaluation of fuzzy portfolio in different risk measures via DEA. Ann. Oper. Res. 269 (2018) 103–127. [Google Scholar]
  • W.W. Cooper, Z. Huang, V. Lelas, S.X. Li and O.B. Olesen, Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Prod. Anal. 9 (1998) 53–79. [CrossRef] [Google Scholar]
  • W.W. Cooper, H. Deng, Z. Huang and S.X. Li, Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis. J. Oper. Res. Soc. 53 (2002) 1347–1356. [CrossRef] [Google Scholar]
  • H. Ding, Z. Zhou, H. Xiao, C. Ma and W. Liu, Performance evaluation of portfolios with margin requirements. Math. Prob. Eng. 2014 (2014) 1–8. [Google Scholar]
  • Z. Huang and S.X. Li, Stochastic DEA models with different types of input-output disturbances. J. Prod. Anal. 15 (2001) 95–113. [CrossRef] [Google Scholar]
  • T. Joro and P. Na, Portfolio performance evaluation in a mean-variance-skewness framework. Eur. J. Oper. Res. 175 (2006) 446–461. [Google Scholar]
  • J.D. Lamb and K.H. Tee, Data envelopment analysis models of investment funds. Eur. J. Oper. Res. 216 (2012) 687–696. [Google Scholar]
  • R. Lin and Z. Li, Directional distance based diversification super-efficiency DEA models for mutual funds, Omega 97 (2019) 102096. [Google Scholar]
  • W.B. Liu, D.Q. Zhang, W. Meng, X.X. Li and F. Xu, A study of DEA models without explicit inputs. Omega 39 (2011) 472–480. [CrossRef] [Google Scholar]
  • W. Liu, Z. Zhou, D. Liu and H. Xiao, Estimation of portfolio efficiency via DEA. Omega 52 (2015) 107–118. [Google Scholar]
  • M.S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone programming. Linear Algebra App. 284 (1998) 193–228. [CrossRef] [Google Scholar]
  • H. Markowitz, Portfolio selection. J. Finan. 7 (1952) 77–91. [Google Scholar]
  • B.P.S. Murthi, Y.K. Choi and P. Desai, Efficiency of mutual funds and portfolio performance measurement: a non-parametric approach. Eur. J. Oper. Res. 98 (1997) 408–418. [Google Scholar]
  • O.B. Olesen and N.C. Petersen, Stochastic data envelopment analysis – a review. Eur. J. Oper. Res. 251 (2016) 2–21. [Google Scholar]
  • T. Ren, Z. Zhou and H. Xiao, Estimation of portfolio efficiency considering social responsibility: evidence from the multi-horizon diversification DEA. RAIRO: Oper. Res. 55 (2021) 611–637. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A.C. Tarnaud and H. Leleu, Portfolio analysis with DEA: prior to choosing a model. Omega 75 (2018) 57–76. [Google Scholar]
  • E.G. Tsionas and E.N. Papadakis, A Bayesian approach to statistical inference in stochastic DEA. Omega 38 (2010) 309–314. [CrossRef] [Google Scholar]
  • G. Yang, W. Shen, D. Zhang and W. Liu, Extended utility and DEA models without explicit input. J. Oper. Res. Soc. 65 (2014) 1212–1220. [CrossRef] [Google Scholar]
  • Z. Zhou, L. Lin, H. Xiao, C. Ma and S. Wu, Stochastic network DEA models for two-stage systems under the centralized control organization mechanism. Comput. Ind. Eng. 110 (2017) 404–412. [CrossRef] [Google Scholar]
  • Z. Zhou, H. Xiao, Q. Jin and W. Liu, DEA frontier improvement and portfolio rebalancing: an application of China mutual funds on considering sustainability information disclosure. Eur. J. Oper. Res. 269 (2018) 111–131. [Google Scholar]
  • Z. Zhou, E. Chen, H. Xiao, T. Ren and Q. Jin, Performance evaluation of portfolios with fuzzy returns. RAIRO: Oper. Res. 53 (2019) 1581–1600. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.