Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2277 - 2291 | |
DOI | https://doi.org/10.1051/ro/2022106 | |
Published online | 29 July 2022 |
- H.A. Ahangar, M. Chellali and S.M. Sheikholeslami, On the double Roman domination in graphs. Discrete Appl. Math. 232 (2017) 1–7. [CrossRef] [MathSciNet] [Google Scholar]
- P. Alimonti and V. Kann, Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237 (2000) 123–134. [CrossRef] [Google Scholar]
- F. Alizade, H.R. Maimani, L.P. Majd and M.R. Parsa, Roman {2}-domination in graphs and graph products. Preprint arXiv:1701.01416 (2017). [Google Scholar]
- V. Anu and S. Aparna Lakshmanan, Double Roman domination number. Discrete Appl. Math. 244 (2018) 198–204. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2}-domination. Discrete Appl. Math. 204 (2016) 22–28. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chlebk and J. Chlebková, Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206 (2008) 1264–1275. [CrossRef] [Google Scholar]
- E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs. Discrete Math. 278 (2004) 11–22. [Google Scholar]
- B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85 (1990) 12–75. [CrossRef] [Google Scholar]
- O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman domination number of a graph. Discrete Math. 309 (2009) 3447–3451. [CrossRef] [MathSciNet] [Google Scholar]
- M.R. Garey and D.S. Johnson, Computers and Interactability: A Guide to the Theory of NP-completeness. Freeman, New York (1979). [Google Scholar]
- T.W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs. CRC Press (1998). [Google Scholar]
- M.A. Henning and A. Pandey, Algorithmic aspects of semitotal domination in graphs. Theor. Comput. Sci. 766 (2019) 46–57. [CrossRef] [Google Scholar]
- M. Ivanović, Improved mixed integer linear programing formulations for Roman domination problem. Publications de l’Institut Mathematique 99 (2016) 51–58. [CrossRef] [Google Scholar]
- C.E. Leiserson, R.L. Rivest, T.H. Cormen and C. Stein, Introduction to Algorithms. MIT Press Cambridge, MA (2001). [Google Scholar]
- M. Lin and C. Chen, Counting independent sets in tree convex bipartite graphs. Discrete Appl. Math. 218 (2017) 113–122. [CrossRef] [MathSciNet] [Google Scholar]
- N. Mahadev and U. Peled, Threshold Graphs and Related Topics. Elsevier (1995). [Google Scholar]
- D.A. Mojdeh and L. Volkmann, Roman {3}-domination (double Italian domination). Discrete Appl. Math. 283 (2020) 555–564. [CrossRef] [MathSciNet] [Google Scholar]
- A. Oganian and D. Josep, On the complexity of optimal microaggregation for statistical disclosure control. Stat. J. United Nations Econ. Commission Eur. 18 (2001) 345–353. [CrossRef] [Google Scholar]
- B.S. Panda and A. Pandey, Algorithm and hardness results for outer-connected dominating set in graphs. J. Graph Algorithms Appl. 18 (2014) 493–513. [CrossRef] [MathSciNet] [Google Scholar]
- B.S. Panda, A. Pandey and S. Paul, Algorithmic aspects of b-disjunctive domination in graphs. J. Comb. Optim. 36 (2018) 572–590. [CrossRef] [MathSciNet] [Google Scholar]
- C.H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43 (1991) 425–440. [CrossRef] [Google Scholar]
- N.J. Rad and L. Volkmann, Roman domination perfect graphs. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 19 (2019) 167–174. [Google Scholar]
- C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy. Am. Math. Mon. 107 (2000) 585–594. [CrossRef] [Google Scholar]
- A. Robert, T.W. Haynes and S.T. Hedetniemi, Double Roman domination. Discrete Appl. Math. 211 (2016) 23–29. [CrossRef] [MathSciNet] [Google Scholar]
- R. Uehara and Y. Uno, Efficient algorithms for the longest path problem. In: International Symposium on Algorithms and Computation. Springer, Berlin (2004) 871–883. [Google Scholar]
- D.B. West, Introduction to Graph Theory. Prentice Hall, Upper Saddle River 92001). [Google Scholar]
- P. Wu, Z. Li, Z. Shao and S.M. Sheikholeslami, Trees with equal Roman {2}-domination number and independent Roman {2}-domination number. RAIRO: Oper. Res. 53 (2019) 389–400. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M. YannakakisNode-and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing. STOC, New York, USA (1978) 253–264. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.