Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2181 - 2201
Published online 20 July 2022
  • J. Chakareski, P. Frossard, H. Kerivin, J. Leblet and G. Simon, A note on the data-driven capacity of p2p networks. Technical Report EPFL-LTS-2009-008, École Polytechnique Fédérale de Lausanne, Switzerland (2009). [Google Scholar]
  • M. Conforti, G. Cornuéjols and G. Zambelli, Extended formulations in combinatorial optimization. 4OR-Q J Oper. Res. 8 (2010) 1–48. [Google Scholar]
  • G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, Solution of a large-scale traveling salesman problem. Oper. Res. 2 (1954) 393–410. [Google Scholar]
  • M. Didi Biha, H. Kerivin and A.R. Mahjoub, Steiner trees and polyhedra. Discrete Appl. Math. 112 (2001) 101–120. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Didi Biha, H.L.M. Kerivin and P.H. Ng, Polyhedral study of the connected sugbraph problem. Discrete Math. 338 (2015) 80–92. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Diestel, Graph Theory, 3rd edition. Springer-Verlag, Berlin Heidelberg (2006). [Google Scholar]
  • J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1 (1977) 185–204. [CrossRef] [Google Scholar]
  • M. Fürer and B. Raghavachari, Approximating the minimum-degree Steiner tree problem to within one of optimal. J. Algorithms 17 (1994) 409–423. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman and Company, New York (1979). [Google Scholar]
  • M.X. Goemans, The Steiner tree polytope and related polyhedra. Math. Prog. 63 (1994) 157–182. [CrossRef] [Google Scholar]
  • K. Jain, A factor 2 approxiamtion algorithm for the generalized Steiner network problem. Combinatorica 21 (2001) 39–60. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Kerivin and A.R. Mahjoub, Design of survivable networks: a survey. Networks 46 (2005) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Kerivin and J. Zhao, A computational study on the maximum-weight bounded-degree rooted tree problem. Appl. Math. Comput. 413 (2022) 126623. [Google Scholar]
  • H. Kerivin, J. Leblet, G. Simon and F. Zhou, Maximum bounded rooted-tree packing problem. Preprint arXiv:1111.0706 (2011). [Google Scholar]
  • T. Király, L.C. Lau and M. Singh, Degree bounded matroids and submodular flows. Combinatorica 32 (2012) 703–720. [CrossRef] [MathSciNet] [Google Scholar]
  • G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988). [Google Scholar]
  • A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, Berlin Heidelberg (2003). [Google Scholar]
  • M. Singh and L.C. Lau, Approximating minimum bounded degree spanning trees to within one of optimal. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC) (2007) 661–670. [Google Scholar]
  • C. Vinhas de Lima, Le Problème du Packing Borné Maximal de r-Arbre: Etude polyédrale pour le cas du graphe étoile avec 2 arbres. Master’s thesis, Institut Supérieur d’Informatique, de Modélisation et de leurs Applications (ISIMA) (2016). [Google Scholar]
  • J. Zhao, Maximum bounded rooted-tree problem: algorithms and polyhedra. Ph.D. thesis, LIMOS, Université Clermont Auvergne (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.