Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 3155 - 3185
Published online 05 September 2022
  • M. Abdel-Aty, J. Lee, C. Siddiqui and K. Choi, Geographical unit based analysis in the context of transportation safety planning. Transp. Res. Part A: Policy Pract. 49 (2013) 62–75. [CrossRef] [Google Scholar]
  • H. Dalman, Uncertain programming model for multi-item solid transportation problem. Int. J. Mach. Learn. Cybern. 9 (2018) 559–567. [CrossRef] [Google Scholar]
  • A. Ebrahimnejad, A method for solving linear programming with interval-valued trapezoidal fuzzy variables. RAIRO: Oper. Res. 52 (2018) 955–979. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • O. Ergun, G. Kuyzu and M. Savelsbergh, Reducing truckload transportation costs through collaboration. Transp. Sci. 41 (2007) 206–221. [CrossRef] [Google Scholar]
  • S. Ghosh and S.K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO: Oper. Res. 55 (2021) S2923–S2952. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Hamzehee, M.A. Yaghoobi and M. Mashinchi, Linear programming with rough interval coefficients. J. Intell. Fuzzy Syst. 26 (2014) 1179–1189. [Google Scholar]
  • F.L. Hitchcock, The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224–230. [Google Scholar]
  • M.E.T. Horn, Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems. Transp. Res. Part A: Policy Pract. 36 (2002) 167–188. [CrossRef] [Google Scholar]
  • K. Huang, K.F. Wu and M.N. Ardiansyah, A stochastic dairy transportation problem considering collection and delivery phases. Transp. Res. Part E: Logistics Transp. Rev. 129 (2019) 325–338. [CrossRef] [Google Scholar]
  • J.H.L. James, C.C. Hsu and Y.S. Chen, Improving transportation service quality based on information fusion. Transp. Res. Part A: Policy Pract. 67 (2014) 225–239. [CrossRef] [Google Scholar]
  • L.V. Kantorovich, Mathematical methods of organizing and planning production. Manage. Sci. 6 (1960) 366–422. [CrossRef] [Google Scholar]
  • P. Kaur, V. Verma and K. Dahiya, Capacitated two-stage time minimization transportation problem with restricted flow RAIRO: Oper. Res. 51 (2017) 447–467. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • V.P. Kumar and M. Bierlaire, Multi-objective airport gate assignment problem in planning and operations. J. Adv. Transp. 48 (2014) 902–926. [CrossRef] [Google Scholar]
  • P. Luathep, A. Sumalee, W.H.K. Lam, Z.C. Li and H.K. Lo, Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach. Transp. Res. Part B: Methodol. 45 (2011) 808–827. [CrossRef] [Google Scholar]
  • D.R. Mahapatra, S.K. Roy and M.P. Biswal, Multi-choice stochastic transportation problem involving extreme value distribution. Appl. Math. Modell. 37 (2013) 2230–2240. [Google Scholar]
  • G. Maity, D. Mardanya, S.K. Roy and G.W. Weber, A new approach for solving dual-hesitant fuzzy transportation problem with restrictions. Sadhana 44 (2019) 75. [CrossRef] [Google Scholar]
  • G. Maity, S.K. Roy and J.L. Verdegay, Analyzing multimodal transportation problem and its application to artificial intelligence. Neural Comput. App. 32 (2020) 2243–2256. [Google Scholar]
  • D. Mardanya and S.K. Roy, Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Ch. Univ. 37 (2022) 111–130. [CrossRef] [Google Scholar]
  • D. Mardanya, G. Maity and S.K. Roy, Solving bi-level multi-objective transportation problem under fuzziness. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 29 (2021) 411–433. [CrossRef] [Google Scholar]
  • D. Mardanya, G. Maity and S. Kumar Roy, The multi-objective multi-item just-in-time transportation problem. Optimization (2021) 1–32. DOI: 10.1080/02331934.2021.1963246. [CrossRef] [Google Scholar]
  • S. Midya and S.K. Roy, Analysis of interval programming in different environments and its application to fixed-charge transportation problem. Discrete Math. Algorithms App. 9 (2017) 1750040. [CrossRef] [Google Scholar]
  • S. Midya, S.K. Roy and V.F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cybern. 12 (2021) 699–717. [CrossRef] [Google Scholar]
  • S. Midya, S.K. Roy and G.-W. Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO: Oper. Res. 55 (2021) 1715–1741. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R. Moore, Interval Analysis. Prentice-Hall, Englewood-Cliffs, NJ, USA (1996). [Google Scholar]
  • E. Murphy, Urban spatial location advantage: the dual of the transportation problem and its implications for land-use and transport planning. Transp. Res. Part A: Policy Pract. 46 (2012) 91–101. [CrossRef] [Google Scholar]
  • Y.S. Myung and Y.M. Yu, Freight transportation network model with bundling option. Transp. Res. Part E: Logistics Transp. Rev. 133 (2020) 101827. [CrossRef] [Google Scholar]
  • M.S. Osman, E.F. Lashein, E.A. Youness and T.E.M. Atteya, Mathematical programming in rough environment. Optimization 60 (2011) 603–611. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Paraman, R. Bheeman and A. Antony, Goal programming approach for solving multi-objective fractional transportation problem with fuzzy parameters. RAIRO: Oper. Res. 53 (2019) 157–178. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Z. Pawlak, Rough sets. Int. J. Comput. Inf. Sci. 11 (1982) 341–356. [CrossRef] [Google Scholar]
  • Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991). [Google Scholar]
  • Z. Pawlak and A. Skowron, Rudiments of rough sets. Inf. Sci. 177 (2007) 3–27. [Google Scholar]
  • M. Rebolledo, Rough intervals-enhancing intervals for qualitative modeling of technical systems. Artif. Intell. 170 (2006) 667–685. [CrossRef] [Google Scholar]
  • S.K. Roy, G. Maity and G.W. Weber, Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 5 (2017) 417–439. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Roy, S. Midya and V.F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 26 (2018) 971–996. [CrossRef] [Google Scholar]
  • S.K. Roy, A. Ebrahimnejad, J.L. Verdegay and S. Das, New approach for solving intuitionistic fuzzy multi-objective transportation problem. Sadhana 43 (2018) 3. [Google Scholar]
  • S.K. Roy, S. Midya and G.-W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under two-fold uncertainty. Neural Comput. App. 31 (2019) 8593–8613. [CrossRef] [Google Scholar]
  • S. Xiao and E.M.K. Lai, A rough programming approach to power-balanced instruction scheduling for VLIW digital signal processors. IEEE Trans. Signal Process. 56 (2008) 1698–1709. [CrossRef] [MathSciNet] [Google Scholar]
  • S.X. Xu and Q.H. George, Transportation service procurement in periodic sealed double auctions with stochastic demand and supply. Transp. Res. Part B: Methodol. 56 (2013) 136–160. [CrossRef] [Google Scholar]
  • E.A. Youness, Characterizing solutions of rough programming problems. Eur. J. Oper. Res. 168 (2006) 1019–1029. [CrossRef] [Google Scholar]
  • R. Zhang, W.Y. Yun and I. Moon, A reactive tabu search algorithm for the multi-depot container truck transportation problem. Transp. Res. Part E: Logistics Transp. Rev. 45 (2009) 904–914. [CrossRef] [Google Scholar]
  • L. Zhi-Chun, W.H.K. Lam and S.C. Wong, Modeling intermodal equilibrium for bimodal transportation system design problems in a linear monocentric city. Transp. Res. Part B: Methodol. 46 (2012) 30–49. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.