Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 3137 - 3153
Published online 31 August 2022
  • D. Aloise and C. Contardo, A new global optimization algorithm for diameter minimization clusteringIn: Proceedings of Global Optimization Workshop (GOW16), Portugal, edited by D. Aloise. University of Minho/Algoritmi Research Centre. (2016) 171–174. [Google Scholar]
  • J.A.M. Brito, T.M. Veiga and P.L.N. Silva, An optimization algorithm applied to the one-dimensional stratification problem. Surv. Methodol. 45 (2019) 295–315. [Google Scholar]
  • R. Campello, E.R. Hruschka and V. Alves, On the efficiency of evolutionary fuzzy clustering. J. Heuristics 15 (2009) 43–75. [CrossRef] [Google Scholar]
  • S. Chu, J.F. Roddick and J. Pan, Improved search strategies and extensions to k-medoids-based clustering algorithms. Int. J. Bus. Intell. Data Min. 3 (2008) 212–231. [Google Scholar]
  • M. Daskin, Network and Discrete Location: Models, Algorithms, and Applications, 2nd edition. John Wiley & Sons (2013). [Google Scholar]
  • R. Dinata, S. Retno and N. Hasdyna, Minimization of the number of iterations in k-medoids clustering with purity algorithm. Rev. Intell. Artif. 35 (2021) 193–199. [Google Scholar]
  • A.C. Fadel, L.S. Ochi, J.A.M. Brito and G.S. Semaan, Microaggregation heuristic applied to statistical disclosure control. Inf. Sci. 548 (2021) 37–55. [CrossRef] [Google Scholar]
  • E. Falkenauer, Genetic Algorithms and Grouping Problems. John Wiley & Sons (1998). [Google Scholar]
  • P. Festa, A biased random-key genetic algorithm for data clustering. Math. Biosci. 245 (2013) 76–85. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979). [Google Scholar]
  • J. Gonçalves and M. Resende, Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17 (2011) 487–525. [CrossRef] [Google Scholar]
  • D. Gunopulos, Clustering overview and applications. In: Encyclopedia of Database Systems, edited by L. Liu and M.T. Özsu. Springer, Boston, MA (2009). [Google Scholar]
  • J. Hair, W. Black, B. Babin and R. Anderson, Multivariate Data Analysis, 8th edition. Cengage Learning (2018). [Google Scholar]
  • S. Hakimi, Optimum location of switching centers and the absolute centers and medians of a graph. Oper. Res. 12 (1964) 450–459. [CrossRef] [Google Scholar]
  • J. Han and R. Ng, Clarans: a method for clustering objects for spatial datamining. IEEE Trans. Knowl. Data Eng. 14 (2002) 1003–1016. [CrossRef] [Google Scholar]
  • J. Han, J. Pei and H. Tong, Data Mining: Concepts and Techniques, 4th edition. Morgan Kaufmann Publishers 2022). [Google Scholar]
  • P. Hansen and B. Jaumard, Cluster analysis and mathematical programming. Math. Program. 79 (1997) 191–215. [Google Scholar]
  • A. Hudaib, M. Khanafseh and O. Surakhi, An improved version of k-medoid algorithm using CRO. Modern Appl. Sci. 12 (2018) 116–127. [CrossRef] [Google Scholar]
  • R.A. Johnson and W.D. Wichern, Applied Multivariate Statistical Analysis, 6th edition. Pearson (2018). [Google Scholar]
  • L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience (1990). [Google Scholar]
  • M. Kong, J. Pei, H. Cheng and P. Pardalos, A BRKGA-de algorithm for parallel-batching scheduling with deterioration and learning effects on parallel machines under preventive maintenance consideration. Ann. Math. Artif. Intell. 88 (2020) 237–267. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Laporte, S. Nickel and F. da Gama, Location Science, 2nd edition. Springer (2019). [CrossRef] [Google Scholar]
  • C. Lucasius, A. Dane and G. Kateman, On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasibility and comparison. Anal. Chim. Acta 282 (1993) 647–669. [CrossRef] [Google Scholar]
  • R. Mart, P. Pardalos and M. Resende, Handbook of Heuristics, 1st edition. Springer (2018). [CrossRef] [Google Scholar]
  • N. Megiddo and K. Supowit, On the complexity of some common geometric location problems. SIAM J. Comput. 13 (1984) 182–196. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Nascimento, F. Toledo and A. de Carvalho, Investigation of a new grasp- based clustering algorithm applied to biological data. Comput. Oper. Res. 37 (2010) 1381–1388. [CrossRef] [Google Scholar]
  • M. Nascimento, F. Toledo and A. Carvalho, A hybrid heuristic for the k-medoids clustering problem. In: GECCO’12: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. Association for Computing Machinery, New York, NY, USA (2012) 417–424. [CrossRef] [Google Scholar]
  • M. Negreiros and A. Palhano, The capacitated centred clustering problem. Comput. Oper. Res. 33 (2006) 1639–1663. [CrossRef] [Google Scholar]
  • M. Negreiros, N. Maculan, P. Batista, J. Rodrigues and A. Palhano, Capacitated clustering problems applied to the layout of it-teams in software factories. Ann. Oper. Res. (2020). DOI: 10.1007/s10479-020-03785-4. [Google Scholar]
  • R. Oliveira, A. Chaves and L. Lorena, A comparison of two hybrid methods for constrained clustering problems. Appl. Soft Comput. 54 (2017) 256–266. [CrossRef] [Google Scholar]
  • M.K. Pakhira, S. Bandyopadhyay and U. Maulik, A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155 (2005) 191–214. [CrossRef] [Google Scholar]
  • H. Park and C. Jun, A simple and fast algorithm for k-medoids clustering. Expert Syst. App. 36 (2009) 3336–3341. [CrossRef] [Google Scholar]
  • R. Punhani, V.P.S. Arora and A. Sai Sabitha, K-prototype algorithm for clustering large data sets with categorical values to established product segmentation. In: Proceedings of Data Analytics and Management, edited by D. Gupta, Z. Polkowski, A. Khanna, S. Bhattacharyya and O. Castillo. Springer, Singapore (2022) 343–353. [CrossRef] [Google Scholar]
  • M. Rao, Cluster analysis and mathematical programming. J. Am. Stat. Assoc. 66 (1971) 622–626. [CrossRef] [Google Scholar]
  • E. Schubert and P.J. Rousseeuw, Faster k-medoids clustering: Improving the pam, clara, and clarans algorithms. In: Similarity Search and Applications, edited by G. Amato, C. Gennaro, V. Oria and M. Radovanović. Springer International Publishing, Cham (2019) 171–187. [CrossRef] [Google Scholar]
  • E. Schubert and P.J. Rousseeuw, Fast and eager k-medoids clustering: O(k) runtime improvement of the pam, clara, and clarans algorithms. Inf. Syst. 101 (2021) 101804. [CrossRef] [Google Scholar]
  • G. Semaan, Algoritmos para o Problema de Agrupamento Automático. Ph.D. thesis, Federal Fluminense University (2013). [Google Scholar]
  • G.S. Semaan, J.A. de Moura Brito, I. Machado Coelho, E. Franco Silva, A. Cesar Fadel, L. Satoru Ochi and N. Maculan, A brief history of heuristics: from bounded rationality to intractability. IEEE Latin Am. Trans. 18 (2021) 1975–1986. [Google Scholar]
  • W. Sheng and X. Liu, A hybrid algorithm for k-medoid clustering of large data sets. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753) 1 (2004) 77–82. [CrossRef] [Google Scholar]
  • W. Sheng and X. Liu, A genetic k-medoids clustering algorithm. J. Heuristics 12 (2006) 447–466. [CrossRef] [Google Scholar]
  • H. Song, J.G. Lee and W.S. Han, PAMAE: parallel k-medoids clustering with high accuracy and efficiency. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, (2017) 1087–1096. [CrossRef] [Google Scholar]
  • V.M. Spears and K.A.D. Jong, On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms. (1991) 230–236. [Google Scholar]
  • B. Tavakkol and Y. Son, Fuzzy kernel k-medoids clustering algorithm for uncertain data objects. Pattern Anal. App. 24 (2021) 1287–1302. [CrossRef] [Google Scholar]
  • L. Tseng and S. Yang, A genetic approach to the automatic clustering problem. Pattern Recogn. 34 (2001) 415–424. [CrossRef] [Google Scholar]
  • A. Ushakov and I. Vasilyev, Near-optimal large-scale k-medoids clustering. Inf. Sci. 545 (2021) 344–362. [CrossRef] [Google Scholar]
  • A.V. Ushakov and I. Vasilyev, A parallel heuristic for a k-medoids clustering problem with unfixed number of clusters. In: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2019) 1116–1120. [CrossRef] [Google Scholar]
  • M.J. van der Laan, K.S. Pollard and J. Bryan, A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 78 (2003) 575–584. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Vinod, Integer programming and theory of grouping. J. Am. Stat. Assoc. 64 (1969) 506–517. [CrossRef] [Google Scholar]
  • X. Wang and X. Wang, A fast k-medoids clustering algorithm for image segmentation based object recognition. J. Rob. Autom. 4 (2021) 202–211. [Google Scholar]
  • L. Wolsey, Integer Programming, 2nd edition. Wiley (2020). [CrossRef] [Google Scholar]
  • D. Xu and Y. Tian, comprehensive survey of clustering algorithms. Ann. Data Sci. 2 (2015) 165–193. [CrossRef] [Google Scholar]
  • R. Xu and D. Wunsch, Survey clustering algorithms. IEEE Trans. Neural Netw. 16 (2005) 645–678. [CrossRef] [PubMed] [Google Scholar]
  • D. Yu, G. Liu, M. Guo and X. Liu, An improved k-medoids algorithm based on step increasing and optimizing. Expert Syst. App. 92 (2018) 464–473. [CrossRef] [Google Scholar]
  • S. Zadegan, M. Mirzaie and F. Sadoughi, Ranked k-medoids: a fast and accurate rank-based partitioning algorithm for clustering large datasets. Knowl.-Based Syst. 39 (2013) 133–143. [CrossRef] [Google Scholar]
  • Q. Zhang and I. Couloigner, A new and efficient k-medoid algorithm for spatial clustering. Lecture Notes Comput. Sci. 3482 (2005) 181–189. [CrossRef] [Google Scholar]
  • S. Zhu, L. Xu and E. Goodman, Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy. Knowl. Based Syst. 188 (2020) 105018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.