Open Access
Review
Issue
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2221 - 2233
DOI https://doi.org/10.1051/ro/2022060
Published online 25 July 2022
  • M. Abdellaoui, H. Bleidhrodt and O. L’Haridon, A tractable method to measure utility and loss aversion under prospect theory. J. Risk Uncertainty 36 (2008) 245–266. [CrossRef] [Google Scholar]
  • N.H. Anderson, Primacy effects in personality impression formation using a generalized order effect paradigm. J. Pers. Soc. Psychol. 2 (1965) 1–9. [CrossRef] [PubMed] [Google Scholar]
  • N.H. Anderson, Component ratings in impression formation. Psychonomic Sci. 6 (1966) 279–280. [CrossRef] [Google Scholar]
  • N.H. Anderson, Integration theory and attitude change. Psychol. Rev. 78 (1971) 171–206. [CrossRef] [Google Scholar]
  • N.H. Anderson and A. Jacobson, Effect of stimulus inconsistency and discounting instructions in personality impression formation. J. Pers. Soc. Psychol. 2 (1965) 531–539. [CrossRef] [PubMed] [Google Scholar]
  • S.E. Asch, Forming impressions of personality. J. Abnormal Soc. Psychol. 41 (1946) 258–290. [CrossRef] [Google Scholar]
  • C.A. Banaecosta and J.C. Vansnick, The MACBETH approach: basic ideas, software and an application. In: Advances in Decision Analysis, edited by N. Meskens and M. Roubens. Kluwer Academic, Dordrecht (1997) 131–157. [Google Scholar]
  • N.C. Barberis, Thirty years of prospect theory in economics: a review and assessment. J. Econ. Perspect. 27 (2013) 173–196. [CrossRef] [Google Scholar]
  • L.R. Beach and T.R. Mitchell, A contingency model for the selection of decision strategies. Acad. Manage. Rev. 3 (1978) 439–449. [CrossRef] [Google Scholar]
  • J. Beattie and J. Baron, Investigating the effect of stimulus range on attribute weight. J. Exp. Psychol. Human Percept. Perform. 17 (1991) 571–585. [CrossRef] [PubMed] [Google Scholar]
  • M. Behzadian, R.K. Kazemzadeh, A. Albadvi and M. Aghdasi, PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 100 (2010) 198–215. [CrossRef] [Google Scholar]
  • V. Belton and A.E. Gear, On a short-coming of Saaty’s method of analytic hierarchies. Omega 11 (1983) 228–230. [CrossRef] [Google Scholar]
  • S. Benferhat, D. Dubois, S. Kaci and H. Prade, Modeling positive and negative information in possibility theory. Int. J. Intell. Syst. 23 (2008) 1094–1118. [CrossRef] [Google Scholar]
  • J.R. Bettman and W.C. Park, Effects of prior knowledge, experience, and phase of the choice process on the choice process and on consumer decision processes: a protocol analysis. J. Consum. Res. 7 (1980) 141–154. [Google Scholar]
  • J.R. Bettman, M.F. Luce and J.W. Payne, Constructive consumer choice processes. J. Consum. Res. 25 (1998) 187–217. [CrossRef] [Google Scholar]
  • H. Bleichrodt, U. Schmidt and H. Zank, Additive utility in prospect theory. Manage. Sci. 55 (2009) 863–873. [CrossRef] [Google Scholar]
  • J.P. Brans, B. Mareschal, PROMETHEE methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys, edited by J. Figueira, G. Salvatore and M. Ehrgott. Springer, New York (2005) 163–195. [CrossRef] [Google Scholar]
  • P.W. Bridgman, Dimensional Analysis. Yale University Press, New Haven, CT (1922). [Google Scholar]
  • J.T. Cacioppo and G.G. Bernston, The affect system: architecture and operating characteristics. Curr. Directions Psychol. Sci. 8 (1999) 133–137. [CrossRef] [Google Scholar]
  • J.T. Cacioppo, W.L. Gardner and G.G. Bernston, Beyond bipolar conceptualizations and measures: the case of attitudes and evaluative space. Personal Soc. Psychol. Rev. 1 (1997) 3–25. [CrossRef] [PubMed] [Google Scholar]
  • J.M. Choplin and J.E. Hummel, Comparison-induced decoy effects. Memory Cogn. 33 (2005) 332–343. [CrossRef] [PubMed] [Google Scholar]
  • M. Cinelli, M. Kadzinski, M. Gonzalez and R. Słowinski, How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega 96 (2020) 102261. [CrossRef] [Google Scholar]
  • R.M. Dawes and B. Corrigan, Linear models in decision making. Psychol. Bull. 81 (1974) 95–106. [CrossRef] [Google Scholar]
  • B. Dehe and D. Bamford, Development, test and comparison of two Multiple Criteria Decision Analysis (MCDA) models: a case of healthcare infrastructure location. Expert Syst. App. 42 (2015) 6717–6727. [CrossRef] [Google Scholar]
  • P. Delquie, Inconsistent tradeoffs between attributes: new evidence in preference assessment biases. Manage. Sci. 39 (1993) 1382–1395. [CrossRef] [Google Scholar]
  • P. Delquié, Bi-matching: a new preference assessment method to reduce compatibility effects. Manage. Sci. 43 (1997) 640–658. [CrossRef] [Google Scholar]
  • C. Devers, R. Wiseman and R. Holmes, The effects of endowment and loss aversion in managerial stock option valuation. Acad. Manage. J. 50 (2007) 191–208. [CrossRef] [Google Scholar]
  • R. Dhar and R. Glazer, Similarity in context: cognitive representation and violation of preference and perceptual invariance in consumer choice. Organiz. Behav. Human Decis. Processes 67 (1996) 280–293. [CrossRef] [Google Scholar]
  • R.K. Dhurkari, MCGL: a new reference dependent MCDM method. Int. J. Oper. Res. 36 (2019) 477–495. [CrossRef] [MathSciNet] [Google Scholar]
  • R.K. Dhurkari and A.K. Swain, MCGL: a new method for modelling the choice behavior of the decision maker. In: Proceedings of Decision Sciences Institute’s 44th Annual Meeting at Baltimore, USA (2013). [Google Scholar]
  • J.S. Dyer and R.E. Wendell, A critique of the analytic hierarchy process. Technical Report 84/85–4–24, Department of Management, The University of Texas at Austin, Austin, TX, USA (1985). [Google Scholar]
  • H.J. Einhorn, Use of nonlinear, non-compensatory models as a function of task and amount of information. Organiz. Behav. Human Perform. 6 (1971) 1–27. [CrossRef] [Google Scholar]
  • H.J. Einhorn and R.M. Hogarth, Behavioral decision theory: processes of judgment and choice. Ann. Rev. Psychol. 32 (1981) 53–88. [CrossRef] [Google Scholar]
  • Z.P. Fan, X. Zhang, F.D. Chen and Y. Liu, Multiple attribute decision making considering aspiration-levels: a method based on prospect theory. Comput. Ind. Eng. 65 (2013) 341–350. [CrossRef] [Google Scholar]
  • J. Figueira, S. Greco and M. Ehrgott, Editors. Multiple Criteria Decision Analysis: State of the Art Surveys. Springer-Verlag, New York (2016). [Google Scholar]
  • G.W. Fischer, Range sensitivity of attribute weights in multi-attribute value models. Organiz. Behav. Human Decis. Processes 62 (1995) 252–266. [CrossRef] [Google Scholar]
  • G. Fischer and S.A. Hawkins, Strategy compatibility, scale compatibility, and the prominence effect. J. Exp. Psychol. Human Percept. Perform. 19 (1993) 580–597. [CrossRef] [Google Scholar]
  • E.H. Forman and S.I. Gass, The analytic hierarchy process – an exposition. Oper. Res. 49 (2001) 469–486. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Gächter, E.J. Johnson and A.I. Herrmann, Individual-level loss aversion in riskless and risky choices. Theory Decis. 92 (2022) 599–624. [CrossRef] [Google Scholar]
  • Y. Ganzach, Attribute scatter and decision outcome: judgment versus choice. Organiz. Behav. Human Decis. Processes 62 (1995) 113–122. [CrossRef] [Google Scholar]
  • L.F.A.M. Gomes and X.I. González, Behavioral multi-criteria decision analysis: further elaborations on the TODIM method. Found. Comput. Decis. Sci. 37 (2012) 3–8. [CrossRef] [Google Scholar]
  • L.F.A.M. Gomes and M.M.P.P. Lima, TODIM: basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 16 (1992) 113–127. [Google Scholar]
  • L.F.A.M. Gomes and L.A.D. Rangel, An application of the TODIM method to the multicriteria rental evaluation of residential properties. Eur. J. Oper. Res. 193 (2009) 204–211. [Google Scholar]
  • M. Grabisch and C. Labreuche, A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175 (2010) 247–286. [CrossRef] [MathSciNet] [Google Scholar]
  • R.P. Hämäläinen and S. Alaja, The threat of biases in environmental decision analysis. Research reports, E12, Systems Analysis Laboratory, Helsinki, Finland. Association for Consumer Research, Ann Arbor, MI (2003) 431–437. http://www.e-reports.sal.hut.fi. [Google Scholar]
  • S.A. Hawkins, Information processing strategies in riskless preference reversals: the prominence effect. Organiz. Behav. Human Decis. Processes 59 (1994) 1–26. [CrossRef] [Google Scholar]
  • J. Huber and N.M. Klein, Adapting cutoffs to the choice environment: the effects of attribute correlation and reliability. J. Consum. Res. 18 (1991) 346–357. [CrossRef] [Google Scholar]
  • J. Huber, J.W. Payne and C. Puto, Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9 (1982) 90–98. [CrossRef] [Google Scholar]
  • C.L. Hwang and K. Yoon, Multiple Attribute Decision Making-Methods and Applications, A State-of-the-Art Survey. Springer-Verlag, New York (1981). [Google Scholar]
  • E. Jacquet-Lagreze and Y. Siskos, Preference disaggregation: 20 years of MCDA experience, invited review. Eur. J. Oper. Res. 130 (2001) 233–245. [CrossRef] [Google Scholar]
  • I.L. Janis and L. Mann, Decision Making: A Psychological Analysis of Conflict, Choice, and Commitment. Free Press, New York (1977). [Google Scholar]
  • E. Johnson and E.J. Russo, Product familiarity and learning new information. J. Consum. Res. 11 (1984) 542–550. [CrossRef] [Google Scholar]
  • S. Kaci, Logical formalisms for representing bipolar preferences. Int. J. Intell. Syst. 23 (2008) 985–997. [CrossRef] [Google Scholar]
  • D. Kahneman and D.T. Miller, Norm theory: comparing reality to its alternatives. Psychol. Rev. 93 (1986) 136–153. [CrossRef] [Google Scholar]
  • M.F. Kaplan, Context effects in impression formation: the weighted average versus the meaning change formulation. J. Pers. Soc. Psychol. 19 (1971) 92–99. [CrossRef] [PubMed] [Google Scholar]
  • S. Kauffman, The Origins of Order. Oxford University Press, New York, (1993). [Google Scholar]
  • R. Keeney, Common mistakes in making value trade-offs. Oper. Res. 50 (2002) 935–945. [CrossRef] [Google Scholar]
  • R. Keeney and H. Raiffa, Decisions with Multiple Objectives. Wiley, New York (1976). [Google Scholar]
  • N.M. Klein and S.W. Bither, An investigation of utility-directed cut off selection. J. Consum. Res. 14 (1987) 240–255. [CrossRef] [Google Scholar]
  • M.M. Köksalan, J. Wallenius and S. Zionts, Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific, Singapore (2011). [CrossRef] [Google Scholar]
  • R. Lahdelma and P. Salminen, Prospect theory and stochastic multicriteria acceptability analysis (SMAA). Omega 37 (2009) 961–971. [CrossRef] [Google Scholar]
  • A.K. Lampel and N.H. Anderson, Combining visual and verbal information in an impression formation task. J. Pers. Soc. Psychol. 9 (1968) 1–6. [CrossRef] [PubMed] [Google Scholar]
  • O.I. Larichev, Normative and Descriptive aspects of decision making. In: Multi-criteria Decision Making, Advances in MCDM Models: Algorithms, Theory and Applications: 5.1–5.24, edited by T. Gal, T. Stewart and T. Hanne. Kluwer Academic Publishing, Boston, (1999). [Google Scholar]
  • R.D. Luce, Individual Choice Behavior. John Wiley, New York (1959). [Google Scholar]
  • A. Mardani, A. Jusoh, K. Md Nor, Z. Khalifah, N. Zakwan and A. Valipour, Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Econ. Res. Ekon. Istraž. 28 (2015) 516–571. [Google Scholar]
  • R. Meyer and E.J. Johnson, Empirical generalizations in the modeling of consumer choice. Marketing Sci. 14 (1995) 180–189. [Google Scholar]
  • W.L. Moore, A cross-validity comparison of rating-based and choice-based conjoint analysis models. Int. J. Res. Marketing 21 (2004) 299–312. [CrossRef] [Google Scholar]
  • N. Novemsky and D. Kahneman, The boundaries of loss aversion. J. Marketing Res. 42 (2005) 119–128. [CrossRef] [Google Scholar]
  • G.C. Oden and N.H. Anderson, Differential weighting in integration theory. J. Exp. Psychol. 89 (1971) 152–161. [CrossRef] [Google Scholar]
  • J.W. Payne, Task Complexity and contingent processing in decision making: an information search and protocol analysis. Organiz. Behav. Human Perform. 16 (1976) 366–387. [CrossRef] [Google Scholar]
  • J.W. Payne, Contingent decision behavior. Psychol. Bull. 92 (1982) 382–402. [CrossRef] [Google Scholar]
  • J.W. Payne, M.L. Braunstein and J.S. Carroll, Exploring predecisiohal behavior: an alternative approach to decision research. Organiz. Behav. Human Perform. 22 (1978) 17–44. [CrossRef] [Google Scholar]
  • J.W. Payne, J.R. Bettman and E.J. Johnson, Behavioral decision research: a constructive processing perspective. Ann. Rev. Psychol. 43 (1992) 87–131. [CrossRef] [Google Scholar]
  • M.A. Pereira, J.R. Figueira and R.C. Marques, Using a choquet integral-based approach for incorporating decision-maker’s preference judgments in a data envelopment analysis model. Eur. J. Oper. Res. 284 (2020) 1016–1030. [CrossRef] [Google Scholar]
  • J.C. Pettibone and D.H. Wedell, Examining models of nondominated decoy effects across judgment and choice. Organiz. Behav. Human Decis. Processes 81 (2000) 300–328. [CrossRef] [Google Scholar]
  • J.C. Pettibone and D.H. Wedell, Testing alternative explanations of phantom decoy effects. J. Behav. Decis. Making 20 (2007) 323–341. [CrossRef] [Google Scholar]
  • D.G. Pope and M.E. Schweitzer, Is tiger woods loss averse? Persistent bias in the face of experience, competition, and high stakes. Am. Econ. Rev. 101 (2011) 129–157. [CrossRef] [Google Scholar]
  • M. Pöyhönen and R.P. Hämäläinen, On the convergence of multi attribute weighting methods. Eur. J. Oper. Res. 129 (2001) 569–585. [CrossRef] [Google Scholar]
  • A.R. Pratkanis and P.H. Farquhar, A brief history of research on phantom alternatives: evidence for seven empirical generalizations about phantoms. Basic Appl. Soc. Psychol. 13 (1992) 103–122. [CrossRef] [Google Scholar]
  • R.M. Roe, J.R. Busemeyer and J.T. Townsend, Multi-alternative decision field theory: a dynamic connectionist model of decision making. Psychol. Rev. 108 (2001) 370–392. [CrossRef] [PubMed] [Google Scholar]
  • B. Roy, Classement et choix en presence de points de vue multiples (la methode ELECTRE). Revue Francaise d’Informatique et de Recherche Operationnelle 8 (1968) 57–75. [Google Scholar]
  • B. Roy, From optimization to multicriteria decision aid: three main operational attitudes. In: Multiple Criteria Decision Making, edited by H. Thierez and S. Zionts. Lecture Notes in Economics and Mathematical Systems. Vol. 130. Springer, Berlin (1976) 1–32. [CrossRef] [Google Scholar]
  • B. Roy, Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers, Dordrecht, The Netherlands (1996). [CrossRef] [Google Scholar]
  • T.L. Saaty, A scaling method for priorities in hierarchical structures. Math. Psychol. 15 (1977) 234–281. [CrossRef] [Google Scholar]
  • P. Salminen and J. Wallenius, Testing prospect theory in a deterministic multiple criteria decision-making environment. Decis. Sci. 24 (1993) 279–294. [CrossRef] [Google Scholar]
  • P. Schoemaker, The expected utility model: its variants, purposes, evidence and limitations. J. Econ. Literature 20 (1982) 529–563. [Google Scholar]
  • R. Schumer and R. Cohen, Eine Untersuchung zur sozialen Urteilsbildung. II. Bemerkungen zur verschiedenen konkurrierenden Modellen der Urteilsbildung. Archiv fur die gesamte Psychologie. 120 (1968) 180–202. [Google Scholar]
  • A. Shekhovtsov and W. Sałabun, A comparative case study of the VIKOR and TOPSIS rankings similarity. Proc. Comput. Sci. 176 (2020) 3730–3740. [CrossRef] [Google Scholar]
  • H. Simon, Rational choice and the structure of the environment. Psychol. Rev. 63 (1956) 129–138. [CrossRef] [PubMed] [Google Scholar]
  • H.A. Simon, Invariants of human behavior. Ann. Rev. Psychol. 41 (1990) 1–19. [CrossRef] [PubMed] [Google Scholar]
  • I. Simonson, Choice based on reasons: the case of attraction and compromise effects. J. Consumer Res. 16 (1989) 158–174. [CrossRef] [Google Scholar]
  • I. Simonson and A. Tversky, Choice in context: tradeoff contrast and extremeness aversion. J. Marketing Res. 29 (1992) 231–295. [Google Scholar]
  • P. Slovic, Analyzing the expert judge: a descriptive study of a stockbroker’s decision processes. J. Appl. Psychol. 53 (1969) 255–263. [CrossRef] [Google Scholar]
  • P. Slovic, B. Fischhoff and S. Lichtenstein, Behavioral decision theory. Ann. Rev. Psychol. 28 (1977) 1–39. [CrossRef] [Google Scholar]
  • P. Slovic, M. Finucane, E. Peters and D.G. MacGregor, The affect heuristic. In: Heuristics and Biases: The Psychology of Intuitive Judgment, edited by T. Gilovitch, D. Griffin and D. Kahneman. Cambridge University Press, Cambridge (2002) 397–420. [CrossRef] [Google Scholar]
  • R.L. Solso, Cognitive Psychology. Allyn and Bacon Inc., Boston (1988). [Google Scholar]
  • E. Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic Publishers, Boston, MA, USA (2000). [CrossRef] [Google Scholar]
  • E. Triantaphyllou, Two new cases of rank reversals when the AHP and some of its additive variants are used that do not occur with the Multiplicative AHP. Multi-Criteria Decis. Anal. 10 (2001) 11–25. [CrossRef] [Google Scholar]
  • K. Tsetsos, M. Usher and N. Chater, Preference reversal in multiattribute choice. Psychol. Rev. 117 (2010) 1275–1293. [CrossRef] [PubMed] [Google Scholar]
  • A. Tversky, Intransitivity of preferences. Psychol. Rev. 76 (1969) 31–48. [CrossRef] [Google Scholar]
  • A. Tversky, elimination by aspects: a theory of choice. Psychol. Rev. 79 (1972) 281–299. [CrossRef] [Google Scholar]
  • A. Tversky and D. Kahneman, Loss aversion in riskless choice: a reference dependent model. Q. J. Econ. 107 (1991) 1039–1061. [CrossRef] [Google Scholar]
  • A. Tversky and I. Simonson, Context dependent preferences. Manage. Sci. 39 (1993) 1179–1189. [CrossRef] [Google Scholar]
  • A. Tversky, S. Sattath and P. Slovic, Contingent weighting in judgment and choice. Psychol. Rev. XCV (1988) 371–384. [Google Scholar]
  • M. Usher and J.L. McClelland, Loss aversion and inhibition in dynamical models of multialternative choice. Psychol. Rev. 111 (2004) 757–769. [CrossRef] [PubMed] [Google Scholar]
  • E. Valenzi and L.R. Andrews, Individual differences in the decision process of employment interviewers. J. Appl. Psychol. 58 (1973) 49–53. [CrossRef] [Google Scholar]
  • J. Wallenius, J.S. Dyer, P.C. Fishburn, R.E. Steuer, S. Zionts and K. Deb, Multiple criteria decision making, multi attribute utility theory: recent accomplishments and what lies ahead. Manage. Sci. 54 (2008) 1336–1349. [CrossRef] [Google Scholar]
  • X. Wang and E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega 36 (2008) 45–63. [CrossRef] [Google Scholar]
  • J. Watróbski, J. Jankowski, P. Ziemba, A. Karczmarczyk and M. Zioło, Generalised framework for multi-criteria method selection: rule set database and exemplary decision support system implementation blueprints. Data Brief 22 (2019) 639. [CrossRef] [PubMed] [Google Scholar]
  • J. Watróbski, J. Jankowski, P. Ziemba, A. Karczmarczyk and M. Zioło, Generalised framework for multi-criteria method selection. Omega 86 (2019) 107–124. [CrossRef] [Google Scholar]
  • A.P. Wierzbicki, The use of reference objectives in multiobjective optimization. In: MCDM Theory and Application, edited by G. Fandel and T. Gal. Lecture Notes in Economics and Mathematical Systems. Vol. 177. Springer, Berlin (1980) 468–486. [Google Scholar]
  • H. Zank, Cumulative prospect theory for parametric and mult-iattribute utilities. Math. Oper. Res. 26 (2001) 67–81. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Zeleny, The attribute-dynamic attitude model (ADAM). Manage. Sci. 23 (1976) 12–26. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.