Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2543 - 2556
DOI https://doi.org/10.1051/ro/2022090
Published online 18 August 2022
  • A. Abbas, M. Waseem and M. Yang, An ensemble approach for assessment of energy efficiency of agriculture system in Pakistan. Energ. Effic. 13 (2020) 683–696. [CrossRef] [Google Scholar]
  • Q. An, H. Chen, B. Xiong, J. Wu and L. Liang, Target intermediate products setting in a two-stage system with fairness concern. Omega 73 (2017) 49–59. [Google Scholar]
  • S. Ang and C.M. Chen, Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega 58 (2016) 139–153. [CrossRef] [Google Scholar]
  • M.Z. Angiz, A. Mustafa and M.J. Kamali, Cross-ranking of decision making units in data envelopment analysis. Appl. Math. Modell. 37 (2013) 398–405. [CrossRef] [Google Scholar]
  • L. Castelli, R. Pesenti and W. Ukovich, A classification of DEA models when the internal structure of the decision making units is considered. Ann. Oper. Res. 173 (2010) 207–235. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–186. [Google Scholar]
  • A. Charnes and W.W. Cooper, Preface to topics in data envelopment analysis. Ann. Oper. Res. 2 (1984) 59–94. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • M. Chen, S. Ang, F. Yang and L. Jiang, Efficiency evaluation of non-homogeneous DMUs with inconsistent input quality. Comput. Ind. Eng. 158 (2021) 107418. [CrossRef] [Google Scholar]
  • C.I. Chiang, M.J. Hwang and Y.H. Liu, Determining a common set of weights in a DEA problem using a separation vector. Math. Comput. Modell. 54 (2011) 2464–2470. [CrossRef] [Google Scholar]
  • W.D. Cook and L.M. Seiford, Data envelopment analysis (DEA)–Thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. [CrossRef] [Google Scholar]
  • W.D. Cook, J. Zhu, G. Bi and F. Yang. Network DEA: additive efficiency decomposition, Eur. J. Oper. Res. 207 (2010) 1122–1129. [Google Scholar]
  • W.W. Cooper, K.S. Park and J.T. Pastor, RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J. Prod. Anal. 11 (1999) 5–42. [CrossRef] [Google Scholar]
  • D. Despotis and D. Kuchta, Fuzzy weak link approach to the two-stage DEA. RAIRO: Oper. Res. 55 (2021) 385. [Google Scholar]
  • D.K. Despotis, G. Koronakos and D. Sotiros, The “weak-link” approach to network DEA for two-stage processes. Eur. J. Oper. Res. 254 (2016) 481–492. [CrossRef] [Google Scholar]
  • D.K. Despotis, D. Sotiros and G. Koronakos, A network DEA approach for series multi-stage processes. Omega 61 (2016) 35–48. [Google Scholar]
  • R. Färe and S. Grosskopf, Productivity and intermediate products: a frontier approach. Econ. Lett. 50 (1996) 65–70. [CrossRef] [Google Scholar]
  • H. Fukuyama and R. Matousek, Modelling bank performance: a network DEA approach. Eur. J. Oper. Res. 259 (2017) 721–732. [CrossRef] [Google Scholar]
  • D. Gharakhani, A.T. Eshlaghy, K.F. Hafshejani, R.K. Mavi and F.H. Lotfi, Common weights in dynamic network DEA with goal programming approach for performance assessment of insurance companies in Iran. Manage. Res. Rev. (2018). DOI: 10.1108/MRR-03-2017-0067. [Google Scholar]
  • C. Guo, R.A. Shureshjani, A.A. Foroughi and J. Zhu, Decomposition weights and overall efficiency in two-stage additive network DEA. Eur. J. Oper. Res. 257 (2017) 896–906. [Google Scholar]
  • M. Izadikhah and R.F. Saen, Evaluating sustainability of supply chains by two-stage range directional measure in the presence of negative data. Transp. Res. Part D: Transp. Environ. 49 (2016) 110–126. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights. Expert Syst. App. 37 (2010) 7483–7488. [CrossRef] [Google Scholar]
  • C. Kao, Efficiency decomposition in network data envelopment analysis: a relational model. Eur. J. Oper. Res. 192 (2009) 949–962. [CrossRef] [Google Scholar]
  • C. Kao, Network Data Envelopment Analysis: a review. Eur. J. Oper. Res. 239 (2014) 1–16. [CrossRef] [Google Scholar]
  • C. Kao, Network Data Envelopment Analysis: Foundations and Extensions. Springer, Berlin (2017). [CrossRef] [Google Scholar]
  • C. Kao and S.N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
  • C. Kao and S.N. Hwang, Efficiency measurement for network systems: IT impact on firm performance. Decis. Support Syst. 48 (2010) 437–446. [CrossRef] [Google Scholar]
  • E.E. Karsak and M. Dursun, An integrated supplier selection methodology incorporating QFD and DEA with imprecise data. Expert Syst. App. 41 (2014) 6995–7004. [CrossRef] [Google Scholar]
  • K. Khalili-Damghani and M. Fadaei, A comprehensive common weights data envelopment analysis model: ideal and anti-ideal virtual decision making units approach. J. Ind. Syst. Eng. 11 (2018) 281–306. [Google Scholar]
  • H. Kiaei and R.K. Matin, Common set of weights and efficiency improvement on the basis of separation vector in two-stage network data envelopment analysis. Math. Sci. 14 (2020) 53–65. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Koronakos, D. Sotiros and D.K. Despotis, Reformulation of Network Data Envelopment Analysis models using a common modelling framework. Eur. J. Oper. Res. 278 (2019) 472–480. [CrossRef] [Google Scholar]
  • S. Kourtzidis, R. Matousek and N.G. Tzeremes, Modelling a multi-period production process: evidence from the Japanese regional banks. Eur. J. Oper. Res. 294 (2021) 327–339. [CrossRef] [Google Scholar]
  • Y. Li, Y. Chen, L. Liang and J. Xie, DEA models for extended two-stage network structures. Omega 40 (2012) 611–618. [CrossRef] [Google Scholar]
  • F. Li, Q. Zhu, Z. Chen and H. Xue, A balanced data envelopment analysis cross-efficiency evaluation approach. Expert Syst. App. 106 (2018) 154–168. [CrossRef] [Google Scholar]
  • C.K. Lovell and J.T. Pastor, Units invariant and translation invariant DEA models. Oper. Res. Lett. 18 (1995) 147–151. [CrossRef] [MathSciNet] [Google Scholar]
  • R.K. Mavi, R.F. Saen and M. Goh, Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: a big data approach. Technol. Forecasting Soc. Change 144 (2019) 553–562. [CrossRef] [Google Scholar]
  • M. Mehdiloozad, B.K. Sahoo and I. Roshdi, A generalized multiplicative directional distance function for efficiency measurement in DEA. Eur. J. Oper. Res. 232 (2014) 679–688. [CrossRef] [Google Scholar]
  • P.C. Pendharkar, Cross efficiency evaluation of decision-making units using the maximum decisional efficiency principle. Comput. Ind. Eng. 145 (2020) 106550. [CrossRef] [Google Scholar]
  • S.H. Pishgar-Komleh, T. Zylowski, S. Rozakis and J. Kozyra, Efficiency under different methods for incorporating undesirable outputs in an LCA + DEA framework: a case study of winter wheat production in Poland. J. Environ. Manage. 260 (2020) 110138. [CrossRef] [Google Scholar]
  • S. Saati and N. Nayebi, An algorithm for determining common weights by concept of membership function. J. Linear Topol. Algebra (JLTA) 4 (2015) 165–172. [Google Scholar]
  • B.K. Sahoo, M. Mehdiloozad and K. Tone, Cost, revenue and profit efficiency measurement in DEA: a directional distance function approach. Eur. J. Oper. Res. 237 (2014) 921–931. [Google Scholar]
  • B.K. Sahoo, H. Saleh, M. Shafiee, K. Tone and J. Zhu, An Alternative Approach to Dealing with the Composition Approach for Series Network Production Processes. Asia-Pac. J. Oper. Res. 38 (2021) 2150004. [CrossRef] [Google Scholar]
  • L.M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks. Manage. Sci. 45 (1999) 1270–1288. [Google Scholar]
  • D. Sotiros, G. Koronakos and D.K. Despotis, Dominance at the divisional efficiencies level in network DEA: the case of two-stage processes. Omega 85 (2019) 144–155. [CrossRef] [Google Scholar]
  • M. Toloo, M. Tavana and F.J. Santos-Arteaga, An integrated data envelopment analysis and mixed integer non-linear programming model for linearizing the common set of weights. Cent. Eur. J. Oper. Res. 27 (2019) 887–904. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
  • M.D. Troutt, Derivation of the maximin efficiency ratio model from the maximum decisional efficiency principle. Ann. Oper. Res. 73 (1997) 323–338. [Google Scholar]
  • M.D. Troutt and T.W. Leung, Enhanced bisection strategies for the Maximin Efficiency Ratio model. Eur. J. Oper. Res. 144 (2003) 545–553. [CrossRef] [Google Scholar]
  • G. Vlontzos and P.M. Pardalos, Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renew. Sustain. Energy Rev. 76 (2017) 155–162. [CrossRef] [Google Scholar]
  • H. Wang, C. Pan, Q. Wang and P. Zhou, Assessing sustainability performance of global supply chains: an input-output modeling approach. Eur. J. Oper. Res. 285 (2020) 393–404. [CrossRef] [Google Scholar]
  • D.D. Wu, C. Luo and D.L. Olson, Efficiency evaluation for supply chains using maximin decision support. IEEE Trans. Syst. Man Cybern. Syst. 44 (2014) 1088–1097. [CrossRef] [Google Scholar]
  • D. Yang, J.R. Jiao, Y. Ji, G. Du, P. Helo and A. Valente, Joint optimization for coordinated configuration of product families and supply chains by a leader-follower Stackelberg game. Eur. J. Oper. Res. 246 (2015) 263–280. [CrossRef] [Google Scholar]
  • Y. Zha and L. Liang, Two-stage cooperation model with input freely distributed among the stages. Eur. J. Oper. Res. 205 (2010) 332–338. [Google Scholar]
  • L. Zhao, Q. Zhu and L. Zhang, Regulation adaptive strategy and bank efficiency: a network slacks-based measure with shared resources. Eur. J. Oper. Res. 295 (2021) 348–362. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.