Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2535 - 2542 | |
DOI | https://doi.org/10.1051/ro/2022119 | |
Published online | 18 August 2022 |
- H. Assiyatun and N. Wormald, 3-star factors in random d-regular graphs. Eur. J. Comb. 27 (2006) 1249–1262. [CrossRef] [Google Scholar]
- S. Bekkai, Minimum degree, independence number and pseudo [2, b]-factors in graphs. Discrete Appl. Math. 162 (2014) 108–114. [CrossRef] [MathSciNet] [Google Scholar]
- S. Belcastro and M. Young, 1-factor covers of regular graphs. Discrete Appl. Math. 159 (2011) 281–287. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Bian and S. Zhou, Independence number, connectivity and fractional (g, f)-factors in graphs. Filomat 29 (2015) 757–761. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Egawa, M. Kano and M. Yokota, Existence of all generalized fractional (g, f)-factors of graphs. Discrete Appl. Math. 283 (2020) 265–271. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao, J. Guirao and Y. Chen, A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Math. Sin. Engl. Ser. 35 (2019) 1227–1237. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao, W. Wang and J. Guirao, The extension degree conditions for fractional factor. Acta Math. Sin. Engl. Ser. 36 (2020) 305–317. [CrossRef] [MathSciNet] [Google Scholar]
- K. Kotani, Binding numbers of fractional k-deleted graphs. Proc. Japan Acad. Ser. A 86 (2010) 85–88. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Li, G. Yan and X. Zhang, On fractional (g, f)-covered graphs. OR Trans. (China) 6 (2002) 65–68. [Google Scholar]
- G. Liu and L. Zhang, Characterizations of maximum fractional (g, f)-factors of graphs. Discrete Appl. Math. 156 (2008) 2293–2299. [CrossRef] [MathSciNet] [Google Scholar]
- X. Lv, A degree condition for fractional (g, f, n)-critical covered graphs. AIMS Math. 5 (2020) 872–878. [Google Scholar]
- S. Tsuchiya and T. Yashima, A degree condition implying Ore-type condition for even [2, b]-factors in graphs. Discuss. Math. Graph Theory 37 (2017) 797–809. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Y. Yuan and R. Hao, A neighborhood union condition for fractional ID-[a, b]-factor-critical graphs. Acta Math. Appl. Sin. Engl. Ser. 34 (2018) 775–781. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory (2020) DOI: 10.7151/dmgt.2364. [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. (2021) DOI: 10.1016/j.dam.2021.05.022. [Google Scholar]
- S. Zhou, A result on fractional (a, b, k)-critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. DOI: 10.1007/s10255-022-1096-2. [Google Scholar]
- S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 417–425. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Y. Xu and Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs. Inf. Process. Lett. 152 (2019) 105838. [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. (2021) DOI: 10.1017/S0004972721000952. [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022) DOI: 10.1007/s13226-022-00286-x. [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, On P≥3-factor deleted graphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 178–186. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.