Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2495 - 2511 | |
DOI | https://doi.org/10.1051/ro/2022118 | |
Published online | 09 August 2022 |
- E. Andriantiana, S. Wagner and H. Wang, Greedy trees, subtrees and antichains. Electron. J. Comb. 20 (2013) P28. [CrossRef] [Google Scholar]
- E. Andriantiana, S. Wagner and H. Wang, Extremal problems for trees with given segment sequence. Discrete Appl. Math. 220 (2017) 20–34. [CrossRef] [MathSciNet] [Google Scholar]
- E.O.D. Andriantiana and H. Wang, Subtrees and independent subsets in unicyclic graphs and unicyclic graphs with fixed segment sequence. MATCH Commun. Math. Comput. Chem. 84 (2020) 537–566. [Google Scholar]
- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan Press, New York (1976). [CrossRef] [Google Scholar]
- F. Buckley, Mean distance in line graphs. Congr. Numer. 32 (1981) 153–162. [MathSciNet] [Google Scholar]
- R. Diestel, Graph Theory. Springer-Verlag, Berlin (2006). [Google Scholar]
- A.A. Dobryinin, On the Wiener index of the forest induced by contraction of edges in a tree. MATCH Commun. Math. Comput. Chem. 86 (2021) 321–326. [Google Scholar]
- A.A. Dobrynin and E. Estaji, Wiener index of certain families of hexagonal chains. J. Appl. Math. Comput. 59 (2019) 245–256. [CrossRef] [MathSciNet] [Google Scholar]
- A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications. Acta. Appl. Math. 66 (2001) 211–249. [CrossRef] [MathSciNet] [Google Scholar]
- A.A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener index of hexagonal systems. Acta Appl. Math. 72 (2002) 247–294. [CrossRef] [MathSciNet] [Google Scholar]
- H. Darabi, Y. Alizadeh, S. Klavžar and K.C. Das, On the relation between Wiener index and eccentricity of a graph. J. Comb. Optim. 41 (2021) 817–829. [CrossRef] [MathSciNet] [Google Scholar]
- K.C. Das and M.J. Nadjafi-Arani, On maximum Wiener index of trees and graphs with given radius. J. Comb. Optim. 34 (2017) 574–587. [CrossRef] [MathSciNet] [Google Scholar]
- K.C. Das, I. Gutman and M.J. Nadjafi-Arani, Relations between distance-based and degree-based topological indices. Appl. Math. Comput. 270 (2017) 142–147. [Google Scholar]
- J.K. Doyle and J.E. Graver, Mean distance in a graph. Discrete Math. 7 (1977) 147–154. [CrossRef] [Google Scholar]
- V. Iršič and S. Klavžar, Strong geodetic problem on Cartesian products of graphs. RAIRO Oper. Res. 52 (2018) 205–216. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R.E. Jamison, On the average number of nodes in a subtree of a tree. J. Comb. Theory Ser. B 35 (1983) 207–223. [CrossRef] [Google Scholar]
- R. Kirk and H. Wang, Largest number of subtrees of trees with a given maximum degree. SIAM J. Discrete Math. 22 (2008) 985–995. [CrossRef] [MathSciNet] [Google Scholar]
- S. Klavžar and I. Gutman, Wiener number of vertex-weighted graphs and a chemical application. Discrete Appl. Math. 80 (1997) 73–81. [CrossRef] [MathSciNet] [Google Scholar]
- S. Klavžar and M.J. Nadjafi-Arani, Improved bounds on the difference between the Szeged index and the Wiener index of graphs. Eur. J. Comb. 39 (2014) 148–156. [CrossRef] [Google Scholar]
- S. Klavžar and M.J. Nadjafi-Arani, Wiener index in weighted graphs via unification of Θ*-classes. Eur. J. Comb. 36 (2014) 71–76. [CrossRef] [Google Scholar]
- S. Klavžar and M.J. Nadjafi-Arani, On the difference between the revised Szeged index and the Wiener index. Discrete Math. 333 (2014) 28–34. [CrossRef] [MathSciNet] [Google Scholar]
- M. Knor, S. Majstorović and R. Škrekovski, Graphs whose Wiener index does not change when a specific vertex is removed. Discrete Appl. Math. 238 (2018) 126–132. [CrossRef] [MathSciNet] [Google Scholar]
- S. Li and S. Wang, Further analysis on the total number of subtrees of trees. Electron. J. Comb. 19 (2012) P48. [Google Scholar]
- J. Li, K. Xu, T. Zhang, H. Wang and S. Wagner, Maximum number of subtrees in cacti and block graphs. Aequat. Math. (2022). DOI: 10.1007/s00010-022-00879-1. [Google Scholar]
- Z. Peng and B. Zhou, Minimum status of trees with given parameters. RAIRO Oper. Res. 55 (2021) S765–S785. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Plesník, On the sum of all distances in a graph or digraph. J. Graph Theory 8 (1984) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
- N. Schmuck, S. Wagner and H. Wang, Greedy trees, caterpillars, and Wiener-type graph invariants. MATCH Commun. Math. Comput. Chem. 68 (2012) 273–292. [MathSciNet] [Google Scholar]
- S. Spiro, The Wiener index of signed graphs. Appl. Math. Comput. 416 (2022) 126755. [Google Scholar]
- L.A. Székely and H. Wang, On subtrees of trees. Adv. Appl. Math. 34 (2005) 138–155. [CrossRef] [MathSciNet] [Google Scholar]
- L.A. Székely and H. Wang, Binary trees with the largest number of subtrees. Discrete Appl. Math. 155 (2007) 374–385. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wagner and H. Wang, Indistinguishable trees and graphs. Graphs Comb. 30 (2014) 1593–1605. [CrossRef] [Google Scholar]
- H. Wiener, Structrual determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947) 17–20. [CrossRef] [PubMed] [Google Scholar]
- K. Xu, M. Liu, K.C. Das, I. Gutman and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices. MATCH Commun. Math. Comput. Chem. 71 (2014) 461–508. [MathSciNet] [Google Scholar]
- K. Xu, K.C. Das, S. Klavžar and H. Li, Comparison of Wiener index and Zagreb eccentricity indices. MATCH Commun. Math. Comput. Chem. 84 (2020) 595–610. [Google Scholar]
- K. Xu and J. Li, H. Wang, The number of subtrees in graphs with given number of cut edges. Discrete Appl. Math. 304 (2021) 283–296. [CrossRef] [MathSciNet] [Google Scholar]
- K. Xu, M. Wang and J. Tian, Relations between Merrifield-Simmons and Wiener indices. MATCH Commun. Math. Comput. Chem. 85 (2021) 147–160. [Google Scholar]
- K. Xu, K.C. Das, I. Gutman and M. Wang, Comparison Between Merrifield-Simmons Index and Wiener Index of Graphs. Acta Mathematica Sinica, English Series (2022). DOI: 10.1007/s10114-022-0540-9. [Google Scholar]
- W. Yan and Y.N. Yeh, Enumeration of subtrees of trees. Theor. Comput. Sci. 369 (2006) 256–268. [CrossRef] [Google Scholar]
- X.M. Zhang, X.D. Zhang, D. Gray and H. Wang, The number of subtrees of trees with given degree sequence. J. Graph Theory 73 (2013) 280–295. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.