Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2613 - 2619 | |
DOI | https://doi.org/10.1051/ro/2022123 | |
Published online | 18 August 2022 |
- R. Anstee and Y. Nam, More sufficient conditions for a graph to have factors. Discrete Math. 184 (1998) 15–24. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Egawa, M. Kano and M. Yokota, Existence of all generalized fractional (g, f)-factors of graphs. Discrete Appl. Math. 283 (2020) 265–271. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao and W. Wang, Tight binding number bound for P≥3-factor uniform graphs. Inf. Process. Lett. 172 (2021) 106162. [CrossRef] [Google Scholar]
- W. Gao, W. Wang and Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings. Int. J. Intell. Syst. 36 (2021) 1133–1158. [Google Scholar]
- A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Comb. Theory Ser. B 88 (2003) 195–218. [Google Scholar]
- M. Kano, C. Lee and K. Suzuki, Path and cycle factors of cubic bipartite graphs. Discuss. Math. Graph Theory 28 (2008) 551–556. [Google Scholar]
- M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs. Appl. Math. Lett. 23 (2010) 385–389. [Google Scholar]
- K. Kawarabayashi, H. Matsuda, Y. Oda and K. Ota, Path factors in cubic graphs. J. Graph Theory 39 (2002) 188–193. [Google Scholar]
- M. Las Vergnas, An extension of Tutte’s 1-factor theorem. Discrete Math. 23 (1978) 241–255. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Remarks on fractional ID-[a, b]-factor-critical covered network graphs. Proc. Roman. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 22 (2021) 209–216. [Google Scholar]
- J. Yang, Y. Ma and G. Liu, Fractional (g, f)-factors in graphs. Appl. Math. J. Chinese Univ. Ser. A 16 (2001) 385–390. [MathSciNet] [Google Scholar]
- Y. Yuan and R. Hao, A neighborhood union condition for fractional ID-[a, b]-factor-critical graphs. Acta Math. Appl. Sin. Engl. Ser. 34 (2018) 775–781. [CrossRef] [MathSciNet] [Google Scholar]
- H. Zhang and S. Zhou, Characterizations for P≥2-factor and P≥3-factor covered graphs. Discrete Math. 309 (2009) 2067–2076. [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. (2021). DOI: 10.1016/j.dam.2021.05.022. [Google Scholar]
- S. Zhou, A result on fractional (a, b, k)-critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Binding numbers and restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. 305 (2021) 350–356. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. (2022). DOI: 10.1007/s10255-022-1096-2. [Google Scholar]
- S. Zhou, T. Zhang and Z. Xu, Subgraphs with orthogonal factorizations in graphs. Discrete Appl. Math. 286 (2020) 29–34. [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. (2021). DOI: 10.1017/S0004972721000952. [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022). DOI: 10.1007/s13226-022-00286-x. [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, On P≥3-factor deleted graphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 178–186. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.