Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3491 - 3497
DOI https://doi.org/10.1051/ro/2022159
Published online 19 October 2022
  • T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in domination in graphs, in Developments in Mathematics. Springer (2020). [CrossRef] [Google Scholar]
  • J.F. Fink and M.S. Jacobson, n-domination in graphs, in Graph theory with applications to algorithms and computer science. Wiley-Intersci. Publ., Wiley, New York (1985) 283–300. [Google Scholar]
  • J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in Graph theory with applications to algorithms and computer science. Kalamazoo, Michigan (1984); Wiley-Intersci. Publ., Wiley, New York (1985) 301–311. [Google Scholar]
  • F. Harary and T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs. Discrete Math. 155 (1996) 99–105. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Harary and T.W. Haynes, Double domination in graphs. Ars Combin. 55 (2000) 201–213. [MathSciNet] [Google Scholar]
  • A. Hansberg and L. Volkmann, Multiple domination, in Topics in Domination in Graphs. Developments in Mathematics. Springer (2020) 151–203. [CrossRef] [Google Scholar]
  • S. Alipour, A. Jafari and M. Saghafian, Upper bounds for k-tuple (total) domination numbers of regular graphs. Bull. Iran. Math. Soc. 46 (2020) 573–577. [CrossRef] [Google Scholar]
  • A. Cabrera-Martínez, A note on the k-tuple domination number of graphs. Ars Math. Contemp. 22 (2022) P4.03. [Google Scholar]
  • G.B. Ekinci and C. Bujtás, Bipartite graphs with close domination and k-domination numbers. Open Math. 18 (2020) 873–885. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Jafari Rad, Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph. Australas. J. Comb. 73 (2019) 280–290. [Google Scholar]
  • M.H. Nguyen, M.H. Hà, D.N. Nguyen and T.T. Tran, Solving the k-dominating set problem on very large-scale networks. Comput. Soc. Netw. 7 (2020) 4. [CrossRef] [Google Scholar]
  • Ch.-S. Liao and G.J. Chang, k-tuple domination in graphs. Inform. Process. Lett. 87 (2003) 45–50. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Cabrera-Martínez, New bounds on the double domination number of trees. Discrete Appl. Math. 315 (2022) 97–103. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Cabrera Martínez and J.A. Rodríguez-Velázquez, A note on double domination in graphs. Discrete Appl. Math. 300 (2021) 107–111. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Favaron, M.A. Henning, J. Puech and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks. Discrete Math. 231 (2001) 143–151. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Klasing and C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs. Inform. Process. Lett. 89 (2004) 75–83. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.