Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3471 - 3490
DOI https://doi.org/10.1051/ro/2022158
Published online 14 October 2022
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • J.R. Doyle and R.H. Green, Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. J. Oper. Res. Soc. 45 (1994) 567–578. [CrossRef] [Google Scholar]
  • P. Ghandforoush, P.Y. Huang and B.W. Taylor, A multi-criteria decision model for the selection of a computerized manufacturing control system. Int. J. Prod. Res. 23 (1985) 117–128. [CrossRef] [Google Scholar]
  • M.M. Imany and R.J. Schlesinger, Decision models for robot selection: A comparison of ordinary least squares and linear goal programming methods. Decis. Sci. 20 (1989) 40–53. [CrossRef] [Google Scholar]
  • K.V. Sambasivarao and S.G. Deshmukh, A decision support system for selection and justification of advanced manufacturing technologies. Prod. Plan. Control 8 (1997) 270–284. [CrossRef] [Google Scholar]
  • C. Parkan and M.L. Wu, Decision-making and performance measurement models with applications to robot selection. Comput. Ind. Eng. 36 (1999) 503–523. [CrossRef] [Google Scholar]
  • C. Parkan and M.L. Wu, Comparison of three modern multicriteria decision-making tools. Int. J. Syst. Sci. 31 (2000) 497–517. [CrossRef] [Google Scholar]
  • M. Braglia and R. Gabbrielli, Dimensional analysis for investment selection in industrial robots. Int. J. Prod. Res. 38 (2000) 4843–4848. [CrossRef] [Google Scholar]
  • E.E. Karsak, Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. Int. J. Prod. Res. 40 (2002) 3167–3181. [CrossRef] [Google Scholar]
  • E.E. Karsak and S.S. Ahiska, Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection. Int. J. Prod. Res. 43 (2005) 1537–1554. [Google Scholar]
  • E.E. Karsak and S.S. Ahiska, Improved common weight MCDM model for technology selection. Int. J. Prod. Res. 46 (2008) 6933–6944. [Google Scholar]
  • G.R. Amin and A. Emrouznejad, A note on DEA models in technology selection: An improvement of Karsak and Ahiska’s approach. Int. J. Prod. Res. 45 (2007) 2313–2316. [CrossRef] [Google Scholar]
  • R. Folgado, P. Pecas and E. Henriques, Life cycle cost for technology selection: A case study in the manufacturing of injection moulds. Int. J. Prod. Econ. 128 (2010) 368–378. [CrossRef] [Google Scholar]
  • V.B. Kreng, C.Y. Wu and I.C. Wang, Strategic justification of advanced manufacturing technology using an extended AHP model. Int. J. Adv. Manuf. Technol. 52 (2011) 1103–1113. [CrossRef] [Google Scholar]
  • S. Ghazinoory, M. Daneshmand-Mehr and A. Azadegan, Technology selection: Application of the PROMETHEE in determining preferences – A real case of nanotechnology in Iran. J. Oper. Res. Soc. 64 (2013) 884–897. [CrossRef] [Google Scholar]
  • B. Oztaysi, A decision model for information technology selection using AHP integrated TOPSIS-Grey: The case of content management systems. Knowl.-Based Syst. 70 (2014) 44–54. [CrossRef] [Google Scholar]
  • J. Ren and M. Lutzen, Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. Transp. Res. Part D: Transp. Environ. 40 (2015) 43–60. [CrossRef] [Google Scholar]
  • T.R. Sexton, R.H. Silkman and A.J. Hogan, Data envelopment analysis: Critique and extensions. In: Measuring Efficiency: An Assessment of Data Envelopment Analysis, edited by R.H. Silkman. Jossey-Bass, San Francisco, CA (1986) 73–105. [Google Scholar]
  • J.R. Doyle and R.H. Green, Cross-evaluation in DEA: Improving discrimination among DMUs. INFOR 33 (1995) 205–222. [Google Scholar]
  • R.H. Green, J.R. Doyle and W.D. Cook, Preference voting and project ranking using DEA and cross-evaluation. Eur. J. Oper. Res. 90 (1996) 461–472. [CrossRef] [Google Scholar]
  • R.C. Baker and S. Talluri, A closer look at the use of data envelopment analysis for technology selection. Comput. Ind. Eng. 32 (1997) 101–108. [CrossRef] [Google Scholar]
  • J. Shang and T. Sueyoshi, A unified framework for the selection of flexible manufacturing system. Eur. J. Oper. Res. 85 (1995) 297–315. [CrossRef] [Google Scholar]
  • S. Talluri and K.P. Yoon, A cone-ratio DEA approach for AMT justification. Int. J. Prod. Econ. 66 (2000) 119–129. [CrossRef] [Google Scholar]
  • T.R. Anderson, K.B. Hollingsworth and L.B. Inman, The fixed weighting nature of a cross-evaluation model. J. Prod. Anal. 18 (2002) 249–255. [CrossRef] [Google Scholar]
  • S. Sun, Assessing computer numerical control machines using data envelopment analysis. Int. J. Prod. Res. 40 (2002) 2011–2039. [CrossRef] [Google Scholar]
  • T. Ertay and D. Ruman, Data envelopment analysis based decision model for optimal operator allocation in CMS. Eur. J. Oper. Res. 164 (2005) 800–810. [CrossRef] [Google Scholar]
  • L. Liang, J. Wu, W.D. Cook and J. Zhu, Alternative secondary goals in DEA cross efficiency evaluation. Int. J. Prod. Econ. 113 (2008) 1025–1030. [CrossRef] [Google Scholar]
  • L. Liang, J. Wu, W.D. Cook and J. Zhu, The DEA game cross-efficiency model and its Nash equilibrium. Oper. Res. 56 (2008) 1278–1288. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Wu, L. Liang and Y. Chen, DEA game cross-efficiency approach to Olympic rankings. Omega 37 (2009) 909–918. [Google Scholar]
  • J. Wu, L. Liang and F. Yang, Determination of weights for the ultimate cross efficiency using Shapley value in cooperative game. Expert Syst. App. 36 (2009) 872–876. [CrossRef] [Google Scholar]
  • J. Wu, J. Sun, Y. Zha and L. Liang, Ranking approach of cross-efficiency based on improved TOPSIS technique. J. Syst. Eng. Electron. 22 (2011) 604–608. [CrossRef] [Google Scholar]
  • J. Wu, J. Chu, Q. Zhu, P. Yin and L. Liang, DEA cross-efficiency evaluation based on satisfaction degree: An application to technology selection. Int. J. Prod. Res. 54 (2016) 5990–6007. [CrossRef] [Google Scholar]
  • Y.M. Wang and K.S. Chin, Some alternative models for DEA cross-efficiency evaluation. Int. J. Prod. Econ. 128 (2010) 332–338. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, F. Hosseinzadeh Lofti, Y. Yafari and R. Maddahi, Selecting symmetric weights as a secondary goal in DEA cross-efficiency evaluation. Appl. Math. Model. 35 (2011) 544–549. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Contreras, Optimizing the rank position of the DMU as secondary goal in DEA cross-evaluation. Appl. Math. Model. 36 (2012) 2642–2648. [Google Scholar]
  • L. Liang, J. Wu, W.D. Cook and J. Zhu, The DEA game cross-efficiency model and its Nash equilibrium. Oper. Res. 56 (2008) 1278–1288. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Lim, Minimax and maximin formulations of cross-efficiency in DEA. Comput. Ind. Eng. 62 (2012) 726–731. [CrossRef] [Google Scholar]
  • F. Macro, S. Fabio, C. Nicola and P. Roberto, Using a DEA-cross efficiency approach in public procurement tenders. Eur. J. Oper. Res. 218 (2012) 523–529. [CrossRef] [Google Scholar]
  • R. Maddahi, G.R. Jahanshahloo, F. Hosseinzadeh Lofti and A. Ebrahimnejad, Optimising proportional weights as a secondary goal in DEA cross-efficiency evaluation. Int. J. Oper. Res. 19 (2014) 234–245. [CrossRef] [MathSciNet] [Google Scholar]
  • W.D. Cook and J. Zhu, DEA Cobb-Douglas frontier and cross-efficiency. J. Oper. Res. Soc. 65 (2014) 265–268. [CrossRef] [Google Scholar]
  • J. Du, W.D. Cook, L. Liang and J. Zhu, Fixed cost and resource allocation based on DEA cross-efficiency. Eur. J. Oper. Res. 235 (2014) 206–214. [CrossRef] [Google Scholar]
  • S. Lim, K.W. Oh and J. Zhu, Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. Eur. J. Oper. Res. 236 (2014) 361–368. [CrossRef] [Google Scholar]
  • Q. Cui and Y. Li, Evaluating energy efficiency for airlines: An application of VFB-DEA. J. Air Transp. Manage. 44 (2015) 34–41. [CrossRef] [Google Scholar]
  • P.A. Samuelson, The fundamental singularity theorem for non-joint production. Int. Econ. Rev. 7 (1966) 34–41. [CrossRef] [Google Scholar]
  • L.J. Lau, Profit functions of technologies with multiple inputs and outputs. Rev. Econ. Stat. 54 (1972) 281–289. [CrossRef] [Google Scholar]
  • R.E. Hall, The specification of technology with several kinds of output. J. Political Econ. 81 (1973) 878–892. [CrossRef] [Google Scholar]
  • U. Kohli, Non-joint technologies. Rev. Econ. Stud. 50 (1983) 209–219. [CrossRef] [Google Scholar]
  • U. Kohli, Technology and public goods. J. Public Econ. 26 (1985) 379–400. [CrossRef] [Google Scholar]
  • P. van den Heuvel, Nonjoint production and the cost function: Some refinements. J. Econ. 46 (1986) 283–297. [CrossRef] [Google Scholar]
  • C. Fernandez, G. Koop and M. Steel, A Bayesian analysis of multiple-output production frontiers. J. Econ. 98 (2000) 47–79. [CrossRef] [Google Scholar]
  • C. Fernandez, G. Koop and M. Steel, Multiple-output production with undesirable outputs: An application to nitrogen surplus in agriculture. J. Amer. Stat. Assoc. 97 (2002) 432–442. [CrossRef] [Google Scholar]
  • C. Fernandez, G. Koop and M. Steel, Alternative efficiency measures for multiple-output production. J. Econ. 126 (2005) 411–444. [CrossRef] [Google Scholar]
  • J.T.A.S. Ferreira and M. Steel, Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers. J. Econ. 137 (2007) 641–673. [CrossRef] [Google Scholar]
  • L. Cherchye, B. De Rock, B. Dierynck, F. Roodhooft and J. Sabbe, Opening the black box of efficiency measurement: Input allocation in multi-output settings. Oper. Res. 61 (2013) 1148–1165. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Cherchye, B. De Rock and B. Walheer, Multi-output efficiency with good and bad outputs. Eur. J. Oper. Res. 240 (2015) 872–881. [CrossRef] [Google Scholar]
  • L. Cherchye, B. De Rock and B. Walheer, Multi-output profit efficiency and directional distance functions. Omega 61 (2016) 100–109. [CrossRef] [Google Scholar]
  • B. Walheer, A multi-sector nonparametric production-frontier analysis of the economic growth and the convergence of the European countries. Pac. Econ. Rev. 21 (2016) 498–524. [CrossRef] [Google Scholar]
  • B. Walheer, Growth and convergence of the OECD countries: A multi-sector production-frontier approach. Eur. J. Oper. Res. 252 (2016) 665–675. [CrossRef] [Google Scholar]
  • B. Walheer, Economic growth and greenhouse gases in Europe: A non-radial multi-sector nonparametric production-frontier analysis. Energy Economics 74 (2018) 51–62. [CrossRef] [Google Scholar]
  • B. Walheer, Cost Malmquist productivity index: An output-specific approach for group comparison. J. Prod. Anal. 49 (2018) 79–94. [CrossRef] [Google Scholar]
  • B. Walheer, Disaggregation of the Cost Malmquist productivity index with joint and output-specific inputs. Omega 75 (2018) 1–12. [CrossRef] [Google Scholar]
  • B. Walheer, Scale efficiency for multi-output cost minimizing producers: The case of the US electricity plants. Energy Econ. 70 (2018) 26–36. [CrossRef] [Google Scholar]
  • B. Walheer and L. Zhang, Profit Luenberger and Malmquist-Luenberger indexes for multi-activity decision making units: The case of the star-rated hotel industry in China. Tourism Management 69 (2020) 1–11. [Google Scholar]
  • J. Salerian and C. Chan, Restricting multiple-output multiple-input DEA models by disaggregating the output-input vector. J. Prod. Anal. 24 (2005) 5–29. [CrossRef] [Google Scholar]
  • O. Despic, M. Despic and J. Paradi, DEA-R: Ratio-based comparative efficiency model, its mathematical relation to DEA and its use in applications. J. Prod. Anal. 28 (2007) 33–44. [CrossRef] [Google Scholar]
  • L. Cherchye, B. De Rock and F. Vermeulen, Cost-efficient production behavior under economies of scope: A nonparametric methodology. Oper. Res. 56 (2008) 204–221. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Färe and S. Grosskopf, Network DEA. Socio-Econ. Plan. Sci. 34 (2000) 35–49. [CrossRef] [Google Scholar]
  • R. Färe, S. Grosskopf and G. Whittaker, Network DEA. In: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, edited by J. Zhu and W. Cook. Springer (2007). [Google Scholar]
  • K. Tone and M. Tsutsui, Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 197 (2009) 243–252. [Google Scholar]
  • B. Walheer, Malmquist productivity index for multi-output producers: An application to electricity generation plants. Socio-Econ. Plan. Sci. 65 (2018) 76–88. [Google Scholar]
  • J.E. Beasley, Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 198–216. [Google Scholar]
  • Y.J. Li, F. Yang, L. Liang and Z.S. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach. Eur. J. Oper. Res. 197 (2009) 389–401. [CrossRef] [Google Scholar]
  • M.-M. Yu, C.-C. Chern and B. Hsiao, Human resource rightsizing using centralized data envelopment analysis: Evidence from Taiwan’s airports. Omega 41 (2013) 119–130. [CrossRef] [Google Scholar]
  • V.V. Podinovski and T. Bouzdine-Chameeva, Solving DEA models in a single optimization stage: Can the non-Archimedean infinitesimal be replaced by a small finite epsilon? Eur. J. Oper. Res. 257 (2017) 412–419. [CrossRef] [Google Scholar]
  • G. Appa, On the uniqueness of solutions to linear programs. J. Oper. Res. Soc. 53 (2002) 1127–1132. [CrossRef] [Google Scholar]
  • M. Oral, G.R. Amin and A. Oukil, Cross-efficiency in DEA: A maximum resonated appreciative model. Measurement 63 (2015) 159–167. [CrossRef] [Google Scholar]
  • R. Färe and V. Zelenyuk, Aggregation of cost efficiency: Indicators and indexes across firms. Eur. J. Oper. Res. 146 (2003) 615–620. [CrossRef] [Google Scholar]
  • V. Zelenyuk, A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation. Eur. J. Oper. Res. 228 (2006) 592–600. [Google Scholar]
  • V. Zelenyuk, Aggregation of scale efficiency. Eur. J. Oper. Res. 240 (2016) 269–277. [Google Scholar]
  • A. Mayer and V. Zelenyuk, Aggregation of Malmquist productivity indexes allowing for reallocation of resources. Eur. J. Oper. Res. 238 (2014) 774–785. [CrossRef] [Google Scholar]
  • R. Färe and G. Karagiannis, The denominator rule for share-weighting aggregation. Eur. J. Oper. Res. 260 (2017) 1175–1180. [CrossRef] [Google Scholar]
  • B. Walheer, Aggregation of metafrontier technology gap ratios: The case of European sectors in 1995–2015. Eur. J. Oper. Res. 269 (2018) 1013–1026. [CrossRef] [Google Scholar]
  • B. Walheer, Scale, congestion, and technical efficiency of European countries: A sector-based nonparametric approach. Empir. Econ. 56 (2019) 2025–2078. [CrossRef] [Google Scholar]
  • R. Allen, A.D. Athanassopoulos, R.G. Dyson and E. Thanassoulis, Weight restrictions and value judgements in DEA: Evolution, development and future directions. Ann. Oper. Res. 45 (1997) 2313–2316. [Google Scholar]
  • T. Kuosmanen, L. Cherchye and T. Sipilainen, The law of one price in data envelopment analysis: Restricting weight flexibility across firms. Eur. J. Oper. Res. 170 (2006) 735–757. [CrossRef] [Google Scholar]
  • F. Pedraja-Chaparro, J. Salinas-Jimenez and P. Smith, On the role of weight restrictions in data envelopment analysis. J. Prod. Anal. 8 (1997) 215–230. [CrossRef] [Google Scholar]
  • P. Karande, E. Zavadskas and S. Chakraborty, A study on the ranking performance of some MCDM methods for industrial robot selection problems. Int. J. Ind. Eng. Comput. 7 (2016) 399–422. [Google Scholar]
  • S. Mondal and S. Chakraborty, A solution to robot selection problems using data envelopment analysis. Int. J. Ind. Eng. Comput. 4 (2013) 355–372. [Google Scholar]
  • N. Danila, Strategic evaluation and selection of R&D projects. R&D Manage. 19 (1989) 47–62. [CrossRef] [Google Scholar]
  • R.L. Schmidt and J.R. Freeland, Recent progress in modeling R&D project-selection processes. IEEE Trans. Eng. Manage. 39 (1992) 189–201. [CrossRef] [Google Scholar]
  • A.D. Henriksen and A.J. Traynor, A practical R&D project-selection scoring tool. IEEE Trans. Eng. Manage. 46 (1999) 158–170. [CrossRef] [Google Scholar]
  • L.M. Meade and A. Presley, R&D project selection using the analytic network process. IEEE Trans. Eng. Manage. 49 (2002) 59–66. [CrossRef] [Google Scholar]
  • M. Braglia and A. Petroni, Evaluating and selecting investments in industrial robots. Int. J. Prod. Res. 37 (1999) 4157–4178. [CrossRef] [Google Scholar]
  • M. Oral, O. Kettani and P. Lang, A methodology for collective evaluation and selection of industrial R&D projects. Manage. sci. 37 (1991) 871–885. [CrossRef] [Google Scholar]
  • J. Wu, J. Chu, J. Sun and Q. Zhu, DEA cross-efficiency evaluation based on Pareto improvement. Eur. J. Oper. Res. 248 (2016) 571–579. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.