Open Access
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3461 - 3470
Published online 12 October 2022
  • D. Manerba and R. Mansini, An exact algorithm for the Capacitated Total Quantity Discount Problem. Eur. J. Oper. Res. 222 (2012) 287–300. [CrossRef] [Google Scholar]
  • T. Tan and O. Alp, Optimal sourcing from alternative capacitated suppliers with general cost structures. Omega Int. J. Manage. Sci. 58 (2016) 26–32. [CrossRef] [Google Scholar]
  • A. Federgruen and P. Zipkin, An inventory model with limited production capacity and uncertain demands I. The average cost criterion. Math. Oper. Res. 11 (1986) 193–207. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Federgruen and P. Zipkin, An inventory model with limited production capacity and uncertain demands II. The discounted cost criterion. Math. Oper. Res. 11 (1986) 208–215. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Chen and M. Lambrecht, XY band and modified (s, S) policy. Oper. Res. 44 (1996) 1013–1019. [Google Scholar]
  • S. Chen, The infinite horizon periodic review problem with setup costs and capacity constraints: a partial characterization of the optimal policy. Oper. Res. 52 (2004) 409–421. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Gallego and A. Scheller-Wolf, Capacitated inventory problems with fixed order costs: some optimal policy structure. Eur. J. Oper. Res. 126 (2000) 603–613. [CrossRef] [Google Scholar]
  • G. Gallego and L.B. Toktay, All-or-nothing ordering under a capacity constraint. Oper. Res. 52 (2004) 1001–1002. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Chao, B. Yang and Y. Xu, Dynamic inventory and pricing policy in a capacitated stochastic inventory system with fixed ordering cost. Oper. Res. Lett. 40 (2012) 99–107. [CrossRef] [MathSciNet] [Google Scholar]
  • E.L. Porteus, On the optimality of the generalized (s, S) policies. Manage. Sci. 17 (1971) 411–426. [CrossRef] [Google Scholar]
  • E. Fox, R. Metters and J. Semple, Optimal inventory policy with two suppliers. Oper. Res. 54 (2004) 389–393. [Google Scholar]
  • X. Chao and P. Zipkin, Optimal policy for a periodic-review inventory system under a supply capacity contract. Oper. Res. 56 (2008) 59–68. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Chen, Y. Zhang and X. Zhou, Preservation of quasi-K-concavity and its applications. Oper. Res. 58 (2010) 1012–1016. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Caliskan-Demirag, Y. Chen and Y. Yang, Ordering policies for periodic-review inventory systems with quantity-dependent fixed costs. Oper. Res. 60 (2012) 1–12. [Google Scholar]
  • T.T. Whitin, Inventory control and price theory. Manage. Sci. 2 (1955) 61–80. [CrossRef] [Google Scholar]
  • N.C. Petruzzi and M. Dada, Pricing and the newsvendor problem: a review with extensions. Oper. Res. 47 (1999) 183–194. [CrossRef] [Google Scholar]
  • L.J. Thomas, Price and production decisions with random demand. Oper. Res. 22 (1974) 513–518. [CrossRef] [Google Scholar]
  • D. Pekelman, Simultaneous price-production decisions. Oper. Res. 22 (1974) 788–794. [CrossRef] [Google Scholar]
  • G. Feichtinger and R.F. Hartl, Optimal pricing and production in an inventory model. Eur. J. Oper. Res. 19 (1985) 45–56. [CrossRef] [Google Scholar]
  • A. Federgruen and A. Heching, Combined pricing and inventory control under uncertainty. Oper. Res. 47 (1999) 454–475. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Polatoglu and I. Sahin, Optimal procurement policies under price-dependent demand. Int. J. Prod. Econ. 65 (2000) 141–171. [CrossRef] [Google Scholar]
  • X. Chen and D. Simchi-Levi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: the finite horizon case. Oper. Res. 52 (2004) 887–896. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.