Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
|
|
---|---|---|
Page(s) | 3449 - 3459 | |
DOI | https://doi.org/10.1051/ro/2022153 | |
Published online | 12 October 2022 |
- A. Aazami and K. Stilp, Approximation algorithms and hardness for domination with propagation. SIAM J. Discrete Math. 23 (2009) 1382–1399. [CrossRef] [MathSciNet] [Google Scholar]
- M. Arockiaraj, S. Ruth Julie Kavitha, K. Balasubramanian and J. Bao Liu, On certain topological indices of octahedral and icosahedral networks. IET Control Theory App. 12 (2018) 215–220. [CrossRef] [Google Scholar]
- T.L. Baldwin, L. Mili, M.B. Boisen and R. Adapa, Power system observability with minimal phasor measurement placement. IEEE Trans. Power Syst. 8 (1993) 707–715. [CrossRef] [Google Scholar]
- R. Barrera and D. Ferrero, Power domination in cylinders, tori, and generalized petersen graphs. Networks 58 (2011) 43–49. [CrossRef] [MathSciNet] [Google Scholar]
- K.F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben and V. Vasilevska, Nordhaus-Gaddum problems for power domination. Discrete Appl. Math. 251 (2018) 103–113. [CrossRef] [MathSciNet] [Google Scholar]
- B. Bjorkman, Infectious power domination of hypergraphs. Discrete Math. 343 (2020) 111724. [CrossRef] [MathSciNet] [Google Scholar]
- B. Brimkov, J. Carlson, I.V. Hicks, R. Patel and L. Smith, Power domination throttling. Theor. Comput. Sci. 795 (2019) 142–153. [CrossRef] [Google Scholar]
- D.J. Brueni and L.S. Heath, The PMU placement problem. SIAM J. Discrete Math. 19 (2005) 744–761. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Chang, P. Dorbec, M. Montassier and A. Raspaud, Generalized power domination of graphs. Discrete Appl. Math. 160 (2012) 1691–1698. [CrossRef] [MathSciNet] [Google Scholar]
- C. Cheng, C. Lu and Y. Zhou, The k-power domination problem in weighted trees. Theor. Comput. Sci. 809 (2020) 231–238. [CrossRef] [Google Scholar]
- N. Dean, A. Ilic, I. Ramirez, J. Shen and K. Tian, On the power dominating sets of hypercubes. In: 2011 14th IEEE International Conference on Computational Science and Engineering. IEEE (2011) 488–491. [Google Scholar]
- P. Dorbec and S. Klavžar, Generalized power domination: propagation radius and sierpiski graphs. Acta Appl. Math. 134 (2014) 75–86. [CrossRef] [MathSciNet] [Google Scholar]
- P. Dorbec, M. Mollard, S. Klavžar and S. Špacapan, Power domination in product graphs. SIAM J. Discrete Math. 22 (2008) 554–567. [CrossRef] [MathSciNet] [Google Scholar]
- P. Dorbec, M.A. Henning, C. Löwenstein, M. Montassier and A. Raspaud, Generalized power domination in regular graphs. SIAM J. Discrete Math. 27 (2013) 1559–1574. [CrossRef] [MathSciNet] [Google Scholar]
- P. Dorbec, A. González and C. Pennarun, Power domination in maximal planar graphs. Discrete Math. Theor. Comput. Sci. 21 (2019) 1–24. [MathSciNet] [Google Scholar]
- M. Dorfling and M.A. Henning, A note on power domination in grid graphs. Discrete Appl. Math. 154 (2006) 1023–1027. [CrossRef] [MathSciNet] [Google Scholar]
- D. Ferrero, L. Hogben, F.H.J. Kenter and M. Young, Note on power propagation time and lower bounds for the power domination number. J. Comb. Optim. 34 (2017) 736–741. [CrossRef] [MathSciNet] [Google Scholar]
- J. Guo, R. Niedermeier and D. Raible, Improved algorithms and complexity results for power domination in graphs. Algorithmica 52 (2008) 177–202. [CrossRef] [MathSciNet] [Google Scholar]
- T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M.A. Henning, Domination in graphs applied to electric power networks. SIAM J. Discrete Math. 15 (2002) 519–529. [CrossRef] [MathSciNet] [Google Scholar]
- A.M. Hinz, S. Varghese and A. Vijayakumar, Power domination in Knödel graphs and hanoi graphs. Discussiones Math. Graph Theory 38 (2018) 63. [CrossRef] [MathSciNet] [Google Scholar]
- L. Kang, E. Shan and M. Zhao, Power domination in the generalized petersen graphs. Discuss. Math. Graph Theory 40 (2020) 695–712. [CrossRef] [MathSciNet] [Google Scholar]
- K.M. Koh and K.W. Soh, On the power domination number of the cartesian product of graphs. AKCE Int. J. Graphs Comb. 16 (2019) 253–257. [CrossRef] [MathSciNet] [Google Scholar]
- J. Kuo and W.-L. Wu, Power domination in generalized undirected De Bruijn graphs and Kautz graphs. Discrete Math. Algorithms App. 07 (2015) 1550003. [CrossRef] [Google Scholar]
- M.-Y. Li and S.C. Sevov, Mellitate-based coordination polymers with a recurring motif: controlling dimensionality with secondary ligands. CrystEngComm 15 (2013) 5107. [CrossRef] [Google Scholar]
- C.-S. Liao and D.T. Lee, Power domination in circular-arc graphs. Algorithmica 65 (2013) 443–466. [CrossRef] [MathSciNet] [Google Scholar]
- J.-B. Liu, M.K. Shafiq, H. Ali, A. Naseem, N. Maryam and S.S. Asghar, Topological indices of mth chain silicate graphs. Mathematics 7 (2019) 42. [CrossRef] [Google Scholar]
- C. Lu, R. Mao and B. Wang, Power domination in regular claw-free graphs. Discrete Appl. Math. 284 (2020) 401–415. [CrossRef] [MathSciNet] [Google Scholar]
- J.J. Perry IV, J.A. Perman and M.J. Zaworotko, Design and synthesis of metal-organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38 (2009) 1400. [CrossRef] [PubMed] [Google Scholar]
- R.S. Rajan, J. Anitha and I. Rajasingh, 2-power domination in certain interconnection networks. Proc. Comput. Sci. 57 (2015) 738–744. [CrossRef] [Google Scholar]
- S. Stephen, B. Rajan, J. Ryan, C. Grigorious and A. William, Power domination in certain chemical structures. J. Discrete Algorithms 33 (2015) 10–18. [CrossRef] [MathSciNet] [Google Scholar]
- C. Wang, L. Chen and C. Lu, k-power domination in block graphs. J. Comb. Optim. 31 (2016) 865–873. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wilson, Power domination on permutation graphs. Discrete Appl. Math. 262 (2019) 169–178. [CrossRef] [MathSciNet] [Google Scholar]
- G. Xu and L. Kang, On the power domination number of the generalized petersen graphs. J. Comb. Optim. 22 (2011) 282–291. [CrossRef] [MathSciNet] [Google Scholar]
- G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs. Theor. Comput. Sci. 359 (2006) 299–305. [CrossRef] [Google Scholar]
- I. Yuliana, I.H. Agustin and D.A.R. Wardani, On the power domination number of corona product and join graphs. J. Phys. Conf. Ser. 1211 (2019) 012020. [CrossRef] [Google Scholar]
- M. Zhao and L.Y. Kang, Power domination in planar graphs with small diameter. J. Shanghai Univ. 11 (2007) 218–222. [CrossRef] [MathSciNet] [Google Scholar]
- M. Zhao, L. Kang and G.J. Chang, Power domination in graphs. Discrete Math. 306 (2006) 1812–1816. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.