Open Access
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3643 - 3658
Published online 21 October 2022
  • G.B. Dantzig, Maximization of a Linear Function of Variables Subject to Linear Inequalities. New York (1951). [Google Scholar]
  • G.B. Dantzig, Linear Programming and Extensions. Princeton University (1963). [Google Scholar]
  • J.V. Neumann, On a Maximization Problem. Manuscript. Institute for Advanced Studies, Princeton University, Princeton, NJ (1947). [Google Scholar]
  • A. Hoffman, M. Mannos, D. Sokolowsky and N. Wiegmann, Computational experience in solving linear programs. J. Soc. Ind. Appl. Math. 1 (1953) 17–33. [CrossRef] [Google Scholar]
  • N. Karmarkar, A new polynomial-time algorithm for linear programming, in Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, ACM (1984) 302–311. [CrossRef] [Google Scholar]
  • I. Dikin, Iterative solution of problems of linear and quadratic programming. Soviet Mathematics Doklady. 8 (1967) 674–675. [Google Scholar]
  • E.R. Barnes, A variation on Karmarkar’s algorithm for solving linear programming problems. Math. Program. 36 (1986) 174–182. [CrossRef] [Google Scholar]
  • T. Cavalier and A. Soyster, Some Computational Experience and a Modification of the Karmarkar Algorithm. Pennsylvania State Univ., College of Engineering, Department of Industrial and Management Systems Engineering (1985). [Google Scholar]
  • C.C. Gonzaga, An algorithm for solving linear programming problems in o(n3l) operations, in Progress in Mathematical Programming, Springer (1989) 1–28. [Google Scholar]
  • C.C. Gonzaga, Path-following methods for linear programming. SIAM Rev. 34 (1992) 167–224. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Ye, An o(n3l) potential reduction algorithm for linear programming. Math. Program. 50 (1991) 239–258. [CrossRef] [Google Scholar]
  • S.J. Wright, Primal-dual Interior-Point Methods. Vol. 54, SIAM (1997). [CrossRef] [Google Scholar]
  • J.V. Robert, Linear Programming: Foundations and Extensions. Kluwer Academic, Boston (2001). [Google Scholar]
  • J. Herskovits, Feasible direction interior-point technique for nonlinear optimization. J. Optim. Theory Appl. 99 (1998) 121–146. [CrossRef] [MathSciNet] [Google Scholar]
  • A.E. Gutierrez, S.R. Mazorche, J. Herskovits and G. Chapiro, An interior point algorithm for mixed complementarity nonlinear problems. J. Optim. Theory Appl. 175 (2017) 432–449. [CrossRef] [MathSciNet] [Google Scholar]
  • J.R. Roche, J. Herskovits, E. Bazán and A. Zúñiga, A feasible direction algorithm for general nonlinear semidefinite programming. Struct. Multidiscip. Optim. 55 (2017) 1261–1279. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Aroztegui, J. Herskovits, J.R. Roche and E. Bazá, A feasible direction interior point algorithm for nonlinear semidefinite programming. Struct. Multidiscip. Optim. 50 (2014) 1019–1035. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Herskovits, W.P. Freire, M. Tanaka Fo and A. Canelas, A feasible directions method for nonsmooth convex optimization. Struct. Multidiscip. Optim. 44 (2011) 363–377. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Herskovits, A. Leontiev, G. Dias and G. Santos, Contact shape optimization: a bilevel programming approach. Struct. Multidiscip. Optim. 20 (2000) 214–221. [CrossRef] [Google Scholar]
  • R.H. Byrd, J.C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89 (2000) 149–185. [CrossRef] [MathSciNet] [Google Scholar]
  • A.L. Tits, J.L. Zhou and A. Simple, Quadratically Convergent Interior Point Algorithm for Linear Programming and Convex Quadratic Programming. Springer US, Boston, MA (1994) 411–427. [Google Scholar]
  • N. Ploskas and N. Samaras, Linear Programming using MATLAB®. Vol. 127, Springer (2017). [CrossRef] [Google Scholar]
  • Y. Saad, Iterative Methods for Sparse Linear Systems. Vol. 82, SIAM (2003). [Google Scholar]
  • D.M. Gay, Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newsletter 13 (1985) 10–12. [Google Scholar]
  • N. Maculan and M.H.C. Fampa, Otimização Linear. EdUnB, Braslia (2006). [Google Scholar]
  • A.M.V. Celis, Algoritmo de ponto interior para programação linear baseado no fdipa. Master’s thesis, Universidade Federal do Rio de Janeiro (2018). [Google Scholar]
  • N. Megiddo, Pathways to the optimal set in linear programming, in Progress in Mathematical Programming, Springer (1989) 131–158. [CrossRef] [Google Scholar]
  • M. Kojima, S. Mizuno and A. Yoshise, A Primal-Dual Interior-Point Method for Linear Programming, Progress in Mathematical Programming: Interior-point and Related Method, Edited by N. Megiddo, Springer Verlag, New York, New York (1989) 29–47. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.