Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
|
|
---|---|---|
Page(s) | 3659 - 3665 | |
DOI | https://doi.org/10.1051/ro/2022175 | |
Published online | 19 October 2022 |
- B. Alspach and J. Liu, On the hamilton connectivity of generalized petersen graphs. Discrete Math. 309 (2009) 5461–5473. [CrossRef] [MathSciNet] [Google Scholar]
- F.T. Boesch, Synthesis of reliable networks - a survey. IEEE Trans. Reliab. 35 (1986) 240–246. [CrossRef] [Google Scholar]
- F. Boesch and R. Tindell, Circulants and their connectivities. J. Graph Theory 8 (1984) 487–499. [Google Scholar]
- G. Boruzanl Ekinci and J.B. Gauci, On the reliability of generalized petersen graphs. Discrete Appl. Math. 252 (2019) 2–9. [CrossRef] [MathSciNet] [Google Scholar]
- G. Boruzanl Ekinci and J.B. Gauci, The super–connectivity of Kneser graphs. Discuss. Math. Graph Theory 39 (2019). [Google Scholar]
- Y. Chen, Y. Lin and W. Yan, The super-connectivity of kneser graph kg (n, 3) Preprint arXiv:2103.10041 (2021). [Google Scholar]
- H.S.M. Coxeter, Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 56 (1950) 413–455. [CrossRef] [Google Scholar]
- A. Das, Determining number of generalized and double generalized petersen graph, in Conference on Algorithms and Discrete Applied Mathematics, Springer (2020) 131–140. [CrossRef] [Google Scholar]
- B.J. Ebrahimi, N. Jahanbakht and E.S. Mahmoodian, Vertex domination of generalized petersen graphs. Discrete Math. 309 (2009) 4355–4361. [CrossRef] [MathSciNet] [Google Scholar]
- A.-H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks. IEEE Trans. Comput. 38 (1989) 1586–1591. [CrossRef] [Google Scholar]
- A.-H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph. Inf. Process. Lett. 27 (1988) 195–199. [CrossRef] [Google Scholar]
- D. Ferrero and S. Hanusch, Component connectivity of generalized petersen graphs. Int. J. Comput. Math. 91 (2014) 1940–1963. [CrossRef] [MathSciNet] [Google Scholar]
- L. Gao, X. Xu, J. Wang, D. Zhu and Y. Yang, The decycling number of generalized petersen graphs. Discrete Appl. Math. 181 (2015) 297–300. [CrossRef] [MathSciNet] [Google Scholar]
- M. Ghasemi, Some results about the reliability of folded hypercubes. Bull. Malaysian Math. Sci. Soc. 44 (2021) 1093–1099. [CrossRef] [MathSciNet] [Google Scholar]
- L. Guo, G. Su, W. Lin and J. Chen, Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334 (2018) 401–406. [MathSciNet] [Google Scholar]
- F. Harary, Conditional connectivity. Networks 13 (1983) 347–357. [Google Scholar]
- L. Lin, L. Xu, S. Zhou and S.-Y. Hsieh, The extra, restricted connectivity and conditional diagnosability of split-star networks. IEEE Trans. Parallel Distrib. Syst. 27 (2016) 533–545. [CrossRef] [Google Scholar]
- H. Qiao and J. Meng, On the hamilton laceability of double generalized petersen graphs, Discrete Math. 344 (2021) 112478. [CrossRef] [Google Scholar]
- Y.-L. Qin, B. Xia and S. Zhou, Canonical double covers of generalized petersen graphs, and double generalized petersen graphs. J. Graph Theory 97 (2021) 70–81. [CrossRef] [MathSciNet] [Google Scholar]
- Y Sakamoto, Hamilton cycles in double generalized petersen graphs. Preprint arXiv:1610.02212 (2016). [Google Scholar]
- X. Wang, All double generalized petersen graphs are hamiltonian. Discrete Math. 340 (2017) 3016–3019. [CrossRef] [MathSciNet] [Google Scholar]
- J.-J. Wang and L.-H. Hsu, On the spanning connectivity of the generalized petersen graphs p (n, 3). Discrete Math. 341 (2018) 672–690. [CrossRef] [MathSciNet] [Google Scholar]
- M.E. Watkins, A theorem on tait colorings with an application to the generalized petersen graphs. J. Comb. Theory 6 (1969) 152–164. [CrossRef] [Google Scholar]
- J.-M. Xu, M. Lü, M. Ma and A. Hellwig, Super connectivity of line graphs. Inf. Process. Lett. 94 (2005) 191–195. [CrossRef] [Google Scholar]
- W. Yang and J. Meng, Extraconnectivity of hypercubes. Appl. Math. Lett. 22 (2009) 887–891. [CrossRef] [MathSciNet] [Google Scholar]
- W. Yang and J. Meng, Extraconnectivity of hypercubes (II). Australas. J. Comb. 47 (2010) 189–195. [Google Scholar]
- J.-X. Zhou and Y.-Q. Feng, Super-connected but not super edge-connected graphs. Inf. Process. Lett. 111 (2010) 22–25. [CrossRef] [Google Scholar]
- J.-X. Zhou and Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order 8p. Electron. J. Comb. 19 (2012) P53. [CrossRef] [Google Scholar]
- J.-X. Zhou and Y.-Q. Feng, Cubic bi-Cayley graphs over abelian groups. Eur. J. Comb. 36 (2014) 679–693. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.