Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
|
|
---|---|---|
Page(s) | 3667 - 3674 | |
DOI | https://doi.org/10.1051/ro/2022172 | |
Published online | 31 October 2022 |
- J. Akiyama and M. Kano, Factors and factorizations of graphs, in Lecture Notes in Mathematics. Springer, Berlin, 2031 (2011) 1–347. [Google Scholar]
- A. Amahashi and M. Kano, Factors with given components. Discrete Math. 42 (1982) 1–6. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ando, Y. Egawa, A. Kaneko, K.I. Kawarabayashi and H. Matsuda, Path factors in claw-free graphs. Discrete Math. 243 (2002) 195–200. [CrossRef] [MathSciNet] [Google Scholar]
- C. Berge, Regularizable graphs I. Discrete Math. 23 (1978) 85–89. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Bondy and U.S.R. Murty, Graph theory with applications. Macmillan, London (1976). [CrossRef] [Google Scholar]
- V. Chvátal, Tough graphs and Hamiltonian Circuits. Discrete Math. 5 (1973) 215–228. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dai, Remarks on component factors in graphs. RAIRO:RO 56 (2022) 721–730. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Dai, The existence of path-factor covered graphs. Discuss. Math. Graph Theory 43 (2023) 5–16. [Google Scholar]
- G. Dai and Z. Hu, P3-factors in the square of a tree. Graphs Combin. 36 (2020) 1913–1925. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dai, Z. Zhang, Y. Hang and X. Zhang, Some degree conditions for P≥3-factor covered graphs. RAIRO:RO 55 (2021) 2907–2913. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Dai, Y. Hang, X. Zhang, Z. Zhang and W. Wang, Sufficient conditions for graphs with {P2, P5}-factor. RAIRO:RO 56 (2022) 2895–2901. [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Egawa, M. Furuya and K. Ozeki, Sufficient conditions for the existence of a path-factor which are related to odd components. J. Graph Theory 89 (2018) 327–340. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kaneko, A. Kelmans and T. Nishimura, On packing 3-vertex paths in a graph. J. Graph Theory 36 (2001) 175–197. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kano, C. Lee and K. Suzuki, Path and cycle factors of cubic bipartite graphs. Discuss. Math. Graph Theory 28 (2008) 551–556. [Google Scholar]
- K. Kawarabayashi, H. Matsuda, Y. Oda and K. Ota, Path factors in cubic graphs. J. Graph Theory 39 (2002) 188–193. [Google Scholar]
- M.D. Plummer, Perspectives: Graph factors and factorization: 1985–2003: A survey. Discrete Math. 307 (2007) 791–821. [CrossRef] [MathSciNet] [Google Scholar]
- W.T. Tutte, The factors of graphs. Canad. J. Math. 4 (1952) 314–328. [CrossRef] [MathSciNet] [Google Scholar]
- H. Wang, Path factors of bipartite graphs. J. Graph Theory 18 (1994) 161–167. [Google Scholar]
- D.R. Woodall, The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15 (1973) 225–255. [CrossRef] [Google Scholar]
- J. Yang, Y. Ma and G. Liu, Fractional (g, f)-factors in graphs. Appl. Math. J. Chinese Univ. Ser. A 16 (2001) 385–390. [MathSciNet] [Google Scholar]
- Q.R. Yu and G.Z. Liu, Graph Factors and Matching Extensions. Higher Education Press, Beijing (2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.