Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 3895 - 3913
DOI https://doi.org/10.1051/ro/2022191
Published online 18 November 2022
  • L.R. Abreu, R.F. Tavares-Neto and M.S. Nagano, A new efficient biased random key genetic algorithm for open shop scheduling with routing by capacitated single vehicle and makespan minimization. Eng. Appl. Artif. Intell. 104 (2021) 104373. [CrossRef] [Google Scholar]
  • B. Alidaee and A. Ahmadian, Two parallel machine sequencing problems involving controllable job processing times. Eur. J. Oper. Res. 70 (1993) 335–341. [CrossRef] [Google Scholar]
  • M. Androvich, GTA IV: most expensive game ever developed? Games Ind. Int. 30 (2008). [Google Scholar]
  • J.P. Arnaout, R. Musa and G. Rabadi, A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated parallel machines-part II: enhancements and experimentations. J. Intell. Manuf. 25 (2014) 43–53. [CrossRef] [Google Scholar]
  • M.A Bajestani and R.T. Moghaddam, A new branch-and-bound algorithm for the unrelated parallel machine scheduling problem with sequence-dependent setup times, in Proceedings of the 13th IFAC Symposium on Information Control Problems in Manufacturing. Vol. 42. Moscow, Russia (2009) 792–797. [Google Scholar]
  • C. Blum and A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35 (2003) 268–308. [CrossRef] [Google Scholar]
  • B. Brittain, IN BRIEF: Tencent’s Supercell hit with $92 million mobile-game patent verdict. Available: https://www.reuters.com/business/legal/brief-tencents-supercell-hit-with-92-million-mobile-game-patent-verdict-2021-05-10/ (2021). [Google Scholar]
  • J.T. Chang, X.G. Kong and L. Yin, A novel approach for product makespan prediction in production life cycle. Int. J. Adv. Manuf. Technol. 80 (2015) 1433–1448. [CrossRef] [Google Scholar]
  • T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 3rd edition. MIT Press (2009). [Google Scholar]
  • A. Costa, F.A. Cappadonna and S. Fichera, Minimizing the total completion time on a parallel machine system with tool changes. Comput. Ind. Eng. 91 (2016) 290–301. [CrossRef] [Google Scholar]
  • G. Divsalar, A. Divsalar, A. Jabbarzadeh and H. Sahebi, An optimization approach for green tourist trip design. Soft Comput. 26 (2022) 4303–4332. [CrossRef] [Google Scholar]
  • H.H. Doulabi and S. Khalilpourazari, Stochastic weekly operating room planning with an exponential number of scenarios. Ann. Oper. Res. (2022). DOI: 10.1007/s10479-022-04686-4. [Google Scholar]
  • A. Ebrahimi, H.W. Jeon, S. Lee and C. Wang, Minimizing total energy cost and tardiness penalty for a scheduling-layout problem in a flexible job shop system: a comparison of four metaheuristic algorithms. Comput. Ind. Eng. 141 (2020) 106295. [CrossRef] [Google Scholar]
  • B. Fritz, Video Game Borrows Page from Hollywood Playbook. Los Angeles Times (2009). [Google Scholar]
  • B. Fritz and A. Pham, Star Wars: The Old Republic – The Story Behind a Galactic Gamble. Los Angeles Times (2012). [Google Scholar]
  • M. Ganji, H. Kazemipoor, S.M.H. Molana and S.M. Sajadi, A green multi-objective integrated scheduling of production and distribution with heterogeneous fleet vehicle routing and time windows. J. Cleaner Prod. 259 (2020) 120824. [CrossRef] [Google Scholar]
  • J.S. Gao, X.M. Zhu and R.T. Zhang, A branch-and-price approach to the multitasking scheduling with batch control on parallel machines. Int. Trans. Oper. Res. 2022 (2022) 1–22. [Google Scholar]
  • M. Ghirardi and C.N. Potts, Makespan minimization for scheduling unrelated parallel machines: a recovering beam search approach. Eur. J. Oper. Res. 165 (2005) 457–467. [CrossRef] [Google Scholar]
  • D.E. Goldberg and R. Lingle, Alleles, loci and the traveling salesman problem, in Proceedings of an International Conference on Genetic Algorithms and Their Application. Hillsdale, New Jersey, USA (1985) 154–159. [Google Scholar]
  • W.Y. Jia, Z.B. Jiang and Y. Li, Scheduling to minimize the makespan in large-piece one-of-a-kind production with machine availability constraints. Expert Syst. App. 42 (2015) 9174–9182. [CrossRef] [Google Scholar]
  • R. Jovanovic and S. Voss, Fixed set search application for minimizing the makespan on unrelated parallel machines with sequence-dependent setup times. Appl. Soft Comput. 110 (2021) 107521. [CrossRef] [Google Scholar]
  • I. Kacem and C.B. Chu, Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint. Int. J. Prod. Econ. 112 (2008) 138–150. [CrossRef] [Google Scholar]
  • V. Kayvanfar, G.M. Komaki, A. Aalaei and M. Zandieh, Minimizing total tardiness and earliness on unrelated parallel machines with controllable processing times. Comput. Oper. Res. 41 (2014) 31–43. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Khalilpourazari, Using reinforcement learning to forecast the spread of COVID-19 in France, in 2021 IEEE International Conference on Autonomous Systems (ICAS), Montreal, Canada (2021). [Google Scholar]
  • S. Khalilpourazari and H.H. Doulabi, Robust modelling and prediction of the COVID-19 pandemic in Canada. Int. J. Prod. Res. 2021 (2021) 1–17. [CrossRef] [Google Scholar]
  • S. Khalilpourazari, H.H. Doulabi, A.O. Ciftcioglu and G.W. Weber, Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic. Expert Syst. App. 177 (2021) 114920. [CrossRef] [Google Scholar]
  • A. Khoudi and A. Berrichi, Minimize total tardiness and machine unavailability on single machine scheduling problem: bi-objective branch and bound algorithm. Oper. Res. 20 (2020) 1763–1789. [Google Scholar]
  • E. Kozlowski, D. Mazurkiewicz, T. Zabinski, S. Prucnal and J. Sep, Machining sensor data management for operation-level predictive model. Expert Syst. App. 159 (2020) 1–10. [Google Scholar]
  • M. Lanzetta, A. Rossi and A. Puppato, Modelling activity times by hybrid synthetic method. Prod. Planning Control 27 (2016) 909–924. [CrossRef] [Google Scholar]
  • J.Y. Lee and Y.D. Kim, A branch and bound algorithm to minimize total tardiness of jobs in a two identical-parallel-machine scheduling problem with a machine availability constraint. J. Oper. Res. Soc. 66 (2015) 1542–1554. [Google Scholar]
  • W.C. Lee and J.Y. Wang, A three-agent scheduling problem for minimizing the flow time on two machines. RAIRO: Oper. Res. 54 (2020) 307–323. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • W.C. Lee, J.Y. Wang and L.Y. Lee, A hybrid genetic algorithm for an identical parallel-machine problem with maintenance activity. J. Oper. Res. Soc. 66 (2015) 1906–1918. [CrossRef] [Google Scholar]
  • W.C. Lee, J.Y. Wang and M.C. Lin, A branch-and-bound algorithm for minimizing the total weighted completion time on parallel identical machines with two competing agents. Knowl.-Based Syst. 105 (2016) 68–82. [CrossRef] [Google Scholar]
  • T.K. Liang, B. Zeng, J.Q. Liu, L.F. Ye and C.F. Zou, An unsupervised user behavior prediction algorithm based on machine learning and neural network for smart home. IEEE Access 6 (2018) 49237–49247. [CrossRef] [Google Scholar]
  • Y.K. Lin and F.Y. Hsieh, Unrelated parallel machine scheduling with setup times and ready times. Int. J. Prod. Res. 52 (2014) 1200–1214. [CrossRef] [Google Scholar]
  • F.P.-C. Lin and F.K.H. Phoa, Runtime estimation and scheduling on parallel processing supercomputers via instance-based learning and swarm intelligence. Int. J. Mach. Learn. Comput. 9 (2019) 592–598. [CrossRef] [Google Scholar]
  • S.W. Lin and K.C. Ying, ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Comput. Oper. Res. 51 (2014) 172–181. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Mokhtari, A nature inspired intelligent water drops evolutionary algorithm for parallel processor scheduling with rejection. Appl. Soft Comput. 26 (2015) 166–179. [CrossRef] [Google Scholar]
  • E. Molaee, R. Sadeghian and P. Fattahi, Minimizing maximum tardiness on a single machine with family setup times and machine disruption. Comput. Oper. Res. 129 (2021) 105231. [CrossRef] [Google Scholar]
  • M.E. Moore and J. Novak, Game Development Essentials: Game Industry Career Guide. Cengage Learning (2010). [Google Scholar]
  • M. Moser, N. Musliu, A. Schaerf and F. Winter, Exact and metaheuristic approaches for unrelated parallel machine scheduling. J. Scheduling 25 (2021) 507–534. [Google Scholar]
  • H.M. Motair, Exact and hybrid metaheuristic algorithms to solve bi-objective permutation flow shop scheduling problem, in Iraqi Academics Syndicate International Conference for Pure and Applied Sciences. Vol. 1818. Babylon, Iraq (2022) 1–10. [Google Scholar]
  • S. Nayeri, Z. Sazvar and J. Heydari, A fuzzy robust planning model in the disaster management response phase under precedence constraints. Operational Research 22 (2022) 3571–3605. [CrossRef] [Google Scholar]
  • R. Nessah and I. Kacem, Branch-and-bound method for minimizing the weighted completion time scheduling problem on a single machine with release dates. Comput. Oper. Res. 39 (2012) 471–478. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Nessah, F. Yalaoui and C.B. Chu, A branch-and-bound algorithm to minimize total weighted completion time on identical parallel machines with job release dates. Comput. Oper. Res. 35 (2008) 1176–1190. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Ozturk, M.A. Begen and G.S. Zaric, A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to minimize makespan. Int. J. Prod. Res. 55 (2017) 1815–1831. [CrossRef] [Google Scholar]
  • J. Pacheco, F. Angel-Bello and A. Alvarez, A multi-start tabu search method for a single-machine scheduling problem with periodic maintenance and sequence-dependent set-up times. J. Scheduling 16 (2013) 661–673. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Pei, M.Z. Wan and Z.T. Wang, A new approximation algorithm for unrelated parallel machine scheduling with release dates. Ann. Oper. Res. 285 (2020) 397–425. [CrossRef] [MathSciNet] [Google Scholar]
  • M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer, New York (2010). [Google Scholar]
  • F.J. Rodriguez, M. Lozano, C. Blum and C. Garcia-Martinez, An iterated greedy algorithm for the large-scale unrelated parallel machines scheduling problem. Comput. Oper. Res. 40 (2013) 1829–1841. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Rudek, The single processor total weighted completion time scheduling problem with the sum-of-processing-time based learning model. Inf. Sci. 199 (2012) 216–229. [CrossRef] [Google Scholar]
  • R. Rudek, A fast neighborhood search scheme for identical parallel machine scheduling problems under general learning curves. Appl. Soft Comput. 113 (2021) 108023. [CrossRef] [Google Scholar]
  • J.E. Schaller, Minimizing total tardiness for scheduling identical parallel machines with family setups. Comput. Ind. Eng. 72 (2014) 274–281. [CrossRef] [Google Scholar]
  • D. Senapati, A. Sarkar and C. Karfa, Performance-effective DAG scheduling for heterogeneous distributed systems, in ICDCN 2022: 23rd International Conference on Distributed Computing and Networking. Delhi, India (2022) 234–235. [Google Scholar]
  • J.M.P. Silva, E. Teixeira and A. Subramanian, Exact and metaheuristic approaches for identical parallel machine scheduling with a common server and sequence-dependent setup times. J. Oper. Res. Soc. 72 (2021) 444–457. [CrossRef] [Google Scholar]
  • H. Singh, S. Tyagi, P. Kumar, S.S. Gill and R. Buyya, Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: analysis, performance evaluation, and future directions. Simul. Modell. Pract. Theory 111 (2021) 102353. [CrossRef] [Google Scholar]
  • H. Soleimani, H. Ghaderi, P.W. Tsai, N. Zarbakhshnia and M. Maleki, Scheduling of unrelated parallel machines considering sequence-related setup time, start time-dependent deterioration, position-dependent learning and power consumption minimization. J. Cleaner Prod. 249 (2020) 119428. [CrossRef] [Google Scholar]
  • C.H. Su and J.Y. Wang, A branch-and-bound algorithm for minimizing the total tardiness of multiple developers. Mathematics 10 (2022) 10071200. [Google Scholar]
  • A. Subramanian, M. Battarra and C.N. Potts, An Iterated Local Search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 52 (2014) 2729–2742. [CrossRef] [Google Scholar]
  • C.S. Sung and Y.I. Choung, Minimizing makespan on a single burn-in oven in semiconductor manufacturing. Eur. J. Oper. Res. 120 (2000) 559–574. [CrossRef] [Google Scholar]
  • S. Tanaka and M. Araki, A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines. Int. J. Prod. Econ. 113 (2008) 446–458. [CrossRef] [Google Scholar]
  • M.D. Toksari, A branch and bound algorithm for minimizing makespan on a single machine with unequal release times under learning effect and deteriorating jobs. Comput. Oper. Res. 38 (2011) 1361–1365. [CrossRef] [MathSciNet] [Google Scholar]
  • J.Y. Wang, Algorithms for minimizing resource consumption over multiple machines with a common due window. IEEE Access 7 (2019) 172136–172151. [CrossRef] [Google Scholar]
  • J.Y. Wang, A branch-and-bound algorithm for minimizing the total tardiness of a three-agent scheduling problem considering the overlap effect and environment protection. IEEE Access 7 (2019) 5106–5123. [CrossRef] [Google Scholar]
  • J.Y. Wang, Minimizing the total weighted tardiness of overlapping jobs on parallel machines with a learning effect. J. Oper. Res. Soc. 71 (2020) 910–927. [CrossRef] [Google Scholar]
  • S.J. Wang and M. Liu, A branch and bound algorithm for single-machine production scheduling integrated with preventive maintenance planning. Int. J. Prod. Res. 51 (2013) 847–868. [CrossRef] [Google Scholar]
  • J.Y. Wang, M.W. Chen and K.F. Jea, Minimizing the total tardiness of a game project considering the overlap effect. IEEE Access 8 (2020) 216507–216518. [CrossRef] [Google Scholar]
  • X. Wang, T. Ren, D. Bai, C. Ezeh, H. Zhang and Z. Dong, Minimizing the sum of makespan on multi-agent single-machine scheduling with release dates. Swarm Evol. Comput. 69 (2022) 100996. [CrossRef] [Google Scholar]
  • S.Q. Yao, Z.B. Jiang and N. Li, A branch and bound algorithm for minimizing total completion time on a single batch machine with incompatible job families and dynamic arrivals. Comput. Oper. Res. 39 (2012) 939–951. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.Q. Yin, W.H. Wu, W.H. Wu and C.C. Wu, A branch-and-bound algorithm for a single machine sequencing to minimize the total tardiness with arbitrary release dates and position-dependent learning effects. Inf. Sci. 256 (2014) 91–108. [CrossRef] [Google Scholar]
  • M. Zandieh and M. Roumani, A biogeography-based optimization algorithm for order acceptance and scheduling. J. Ind. Prod. Eng. 34 (2017) 312–321. [Google Scholar]
  • L.K. Zhang, Q.W. Deng, R.H. Lin, G.L. Gong and W.W. Han, A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect. Expert Syst. App. 175 (2021) 114843. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.