Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 3789 - 3800
DOI https://doi.org/10.1051/ro/2022169
Published online 04 November 2022
  • F.L. Hitchcock, The distribution of a product from several sources to numerous localities. Stud. Appl. Math. 20 (1941) 224–230. [Google Scholar]
  • G.B. Dantzig and M.N. Thapa, Linear Programming 2: Theory and Extensions. Springer Science & Business Media (2006). [Google Scholar]
  • I.D. Ezekiel and S.O. Edeki, Modified Vogel approximation method for balanced transportation models towards optimal option settings. Int. J. Civil Eng. Technol. 9 (2018) 358–366. [Google Scholar]
  • K. Swarup, Transportation technique in linear fractional functional programming. J. R. Nav. Sci. Ser. 21 (1966) 256–260. [Google Scholar]
  • M. Jain and P.K. Saksena, Time minimizing transportation problem with fractional bottleneck objective function. Yugoslav J. Oper. Res. 22 (2012) 115–129. [CrossRef] [MathSciNet] [Google Scholar]
  • S.T. Liu, Fractional transportation problem with fuzzy parameters. Soft Comput. 20 (2016) 3629–3636. [CrossRef] [Google Scholar]
  • A.K. Bhurjee and G. Panda, Multiobjective interval fractional programming problems: an approach for obtaining efficient solutions. Opsearch 52 (2015) 156–167. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Cetin and F. Tiryaki, A fuzzy approach using generalized dinkelbach’s algorithm for multiobjective linear fractional transportation problem. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/702319. [Google Scholar]
  • S. Narayanamoorthy and P. Anukokila, Optimal solution of fractional programming problem based on solid fuzzy transportation problem. Int. J. Oper. Res. 22 (2015) 91–105. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Radhakrishnan and P. Anukokila, A compensatory approach to fuzzy fractional transportation problem. Int. J. Math. Oper. Res. 6 (2014) 176–192. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Lachhwani, Modified FGP approach for multi-level multi objective linear fractional programming problems. Appl. Math. Comput. 266 (2015) 1038–1049. [MathSciNet] [Google Scholar]
  • S. Pramanik and D. Banerjee, Multiobjective chance constrained capacitated transportation problem based on fuzzy goal programming. Int. J. Comput. App. 44 (2012) 42–46. [Google Scholar]
  • M. Jain and P.K. Saksena, Time minimizing transportation problem with fractional bottleneck objective function. Yugoslav J. Oper. Res. 22 (2012) 115–129. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Sadia, N. Gupta and Q.M. Ali, Multiobjective capacitated fractional transportation problem with mixed constraints. Math. Sci. Lett. 5 (2016) 235–242. [Google Scholar]
  • J.P. Costa, Computing non-dominated solutions in MOLFP. Eur. J. Oper. Res. 181 (2007) 1464–1475. [Google Scholar]
  • K.T. Atanassov, Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999) 1–137. [Google Scholar]
  • I. Deli and N. Çağman, Intuitionistic fuzzy parameterized soft set theory and its decision making. Appl. Soft Comput. 28 (2015) 109–113. [CrossRef] [Google Scholar]
  • T. Beaula and M. Priyadharsini, A new algorithm for finding a fuzzy optimal solution for intuitionistic fuzzy transportation problems. Int. J. Appl. Fuzzy Sets Artif. Intell. 5 (2015) 183–192. [Google Scholar]
  • G. Gupta and K. Anupum, An efficient method for solving intuitionistic fuzzy transportation problem of type-2. Int. J. Appl. Comput. Math. 3 (2017) 3795–3804. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. American Research Press (1998). [Google Scholar]
  • M. Abdel-Basset, G. Manogaran, A. Gamal and F. Smarandache, A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Autom. Embedded Syst. 22 (2018) 257–278. [CrossRef] [Google Scholar]
  • A.H. Nafei and S.H. Nasseri, A new approach for solving neutrosophic integer programming problems. Int. J. Appl. Oper. Res. Open Access J. 9 (2019) 1–9. [Google Scholar]
  • S.A. Edalatpanah, A nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng. 6 (2019) 367–373. [Google Scholar]
  • R.M. Rizk-Allah, A.E. Hassanien and M. Elhoseny, A multiobjective transportation model under neutrosophic environment. Comput. Electr. Eng. 69 (2018) 705–719. [CrossRef] [Google Scholar]
  • J. Ye, Neutrosophic number linear programming method and its application under neutrosophic number environments. Soft Comput. 22 (2018) 4639–4646. [CrossRef] [Google Scholar]
  • F. Ahmad, Robust neutrosophic programming approach for solving intuitionistic fuzzy multiobjective optimization problems. Complex Intell. Syst. 7 (2021) 1935–1954. [CrossRef] [Google Scholar]
  • A. Panda and M. Pal, A study on pentagonal fuzzy number and its corresponding matrices. Pac. Sci. Rev. B: Humanities Soc. Sci. 1 (2015) 131–139. [Google Scholar]
  • S.K. Das, S.A. Edalatpanah and T. Mandal, A proposed model for solving fuzzy linear fractional programming problem: numerical point of view. J. Comput. Sci. 25 (2018) 367–375. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Das, Application of Transportation Problem Under Pentagonal Neutrosophic Environment. Infinite Study (2020). [Google Scholar]
  • S. Midya, S. Kumar Roy and G. Wilhelm Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO: Oper. Res. 55 (2021) 1715–1741. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R. Kumar, S.A. Edalatpanah, S. Jha and R. Singh, A Pythagorean fuzzy approach to the transportation problem. Complex Intell. Syst. 5 (2019) 255–263. [CrossRef] [Google Scholar]
  • L. Kane, H. Sidibe, S. Kane, H. Bado, M. Konate, D. Diawara and L. Diabate, A simplified new approach for solving fully fuzzy transportation problems with involving triangular fuzzy numbers. J. Fuzzy Extension App. 2 (2021) 89–105. [Google Scholar]
  • J. Pratihar, R. Kumar, S.A. Edalatpanah and A. Dey, Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 7 (2021) 29–40. [CrossRef] [Google Scholar]
  • N.A. Gadhi, K. Hamdaoui, M. El Idrissi and F.Z. Rahou, Necessary optimality conditions for a fractional multiobjective optimization problem. RAIRO: Oper. Res. 55 (2021) S1037–S1049. [CrossRef] [EDP Sciences] [Google Scholar]
  • L. Kané, M. Diakité, H. Bado, S. Kané, K. Moussa and K. Traoré, A new algorithm for fuzzy transportation problems with trapezoidal fuzzy numbers under fuzzy circumstances. J. Fuzzy Extension Appl. 2 (2021) 204–225. [Google Scholar]
  • V.D. Joshi, J. Singh, R. Saini and K.S. Nisar, Solving multi-objective linear fractional transportation problem under neutrosophic environment. J. Interdisciplinary Math. 25 (2022) 123–136. [Google Scholar]
  • T. Pathinathan and K. Ponnivalavan, Pentagonal fuzzy number. Int. J. Comput. Algorithm 3 (2014) 1003–1005. [Google Scholar]
  • C.T. Chang, On the mixed binary goal programming problems. Appl. Math. Comput. 159 (2004) 759–768. [MathSciNet] [Google Scholar]
  • G.A. Ramzannia-Keshteli, S.H. Nasseri, R.M. Ganji and S. Bavandi, Multichoice goal programming with flexible fuzzy goals and constraints. In: 2019 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE (2019, January) 1–4. https://doi.org/10.1109/CFIS.2019.8692163. [Google Scholar]
  • A. Haq, I. Ali and R. Varshney, Compromise allocation problem in multivariate stratified sampling with flexible fuzzy goals. J. Stat. Comput. Simul. 90 (2020) 1557–1569. [Google Scholar]
  • A. Chakraborty, S.P. Mondal, S. Alam, A. Ahmadian, N. Senu, D. De and S. Salahshour, The pentagonal fuzzy number: its different representations, properties, ranking, defuzzification and application in game problems. Symmetry 11 (2019) 248. [CrossRef] [Google Scholar]
  • C. Veeramani, S.A. Edalatpanah and S. Sharanya, Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach. Discrete Dyn. Nat. Soc. 2021 (2021). https://doi.org/10.1155/2021/7308042. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.