Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
|
|
---|---|---|
Page(s) | 4317 - 4325 | |
DOI | https://doi.org/10.1051/ro/2022208 | |
Published online | 21 December 2022 |
- A. Asratian and C. Casselgren, On path factors of (3, 4)-biregular bigraphs. Graphs Combin. 24 (2008) 405–411. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bekkai, Minimum degree, independence number and pseudo [2, b]-factors in graphs. Discrete Appl. Math. 162 (2014) 108–114. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dai, Z. Zhang, Y. Hang and X. Zhang, Some degree conditions for P≥k-factor covered graphs. RAIRO-Oper. Res. 55 (2021) 2907–2913. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Y. Egawa, M. Furuya and K. Ozeki, Sufficient conditions for the existence of a path-factor which are related to odd components. J. Graph Theory 89 (2018) 327–340. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Combin. Theory Ser. B 88 (2003) 195–218. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kano, C. Lee and K. Suzuki, Path and cycle factors of cubic bipartite graphs. Discuss. Math. Graph Theory 28 (2008) 551–556. [Google Scholar]
- M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs. Appl. Math. Lett. 23 (2010) 385–389. [Google Scholar]
- A. Kelmans, Packing 3-vertex paths in claw-free graphs and related topics. Discrete Appl. Math. 159 (2011) 112–127. [Google Scholar]
- M. Kouider and S. Ouatiki, Sufficient condition for the existence of an even [a, b]-factor in graph. Graphs Combin. 29 (2013) 1051–1057. [CrossRef] [MathSciNet] [Google Scholar]
- H. Liu, Binding number for path-factor uniform graphs. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 25–32. [MathSciNet] [Google Scholar]
- R. Matsubara, H. Matsumura, M. Tsugaki and T. Yamashita, Degree sum conditions for path-factors with specified end vertices in bipartite graphs. Discrete Math. 340 (2017) 87–95. [Google Scholar]
- H. Wang, Path factors of bipartite graphs. J. Graph Theory 18 (1994) 161–167. [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Isolated toughness for path factors in networks. RAIRO-Oper. Res. 56 (2022) 2613–2619. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Y. Yuan and R. Hao, Independence number, connectivity and all fractional (a, b, k)-critical graphs. Discuss. Math. Graph Theory 39 (2019) 183–190. [CrossRef] [MathSciNet] [Google Scholar]
- H. Zhang and S. Zhou, Characterizations for P≥2-factor and P≥3-factor covered graphs. Discrete Math. 309 (2009) 2067–2076. [Google Scholar]
- S. Zhou, A result on fractional (a, b, k)-critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. 323 (2022) 343–348. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A note of generalization of fractional ID-factor-critical graphs. Fund. Inform. 187 (2022) 61–69. [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. (2022). DOI: 10.1007/s10255-022-1096-2. [Google Scholar]
- S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. (2022). DOI: 10.1016/j.dam.2022.07.020. [Google Scholar]
- S. Zhou and Q. Bian, The existence of path-factor uniform graphs with large connectivity. RAIRO-Oper. Res. 56 (2022) 2919–2927. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 417–425. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou and Z. Sun, Binding number conditions for P≥2-factor and P≥3-factor uniform graphs. Discrete Math. 343 (2020) 111715. [Google Scholar]
- S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022). DOI: 10.1007/s13226-022-00286-x. [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and H. Liu, Independence number and connectivity for fractional (a, b, k)-critical covered graphs. RAIRO-Oper. Res. 56 (2022) 2535–2542. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. 106 (2022) 195–202. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.