Open Access
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 145 - 156
Published online 17 January 2023
  • F. Ahmad and A.Y. Adhami, Neutrosophic programming approach to multiobjective nonlinear transportation problem with fuzzy parameters. Int. J. Manage. Sci. Eng. Manage. 14 (2018) 218–229. [Google Scholar]
  • J. Arora, An algorithm for interval-valued fuzzy fractional transportation problem. SKIT Res. J. 8 (2018) 71–75. [Google Scholar]
  • K.T. Atanassov, A second type of intuitionistic fuzzy sets. Bull. Stud. Exch. Fuzziness App. 56 (1983) 66–70. [Google Scholar]
  • K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986) 87–96. [Google Scholar]
  • K.T. Atanassov, On Intuitionistic Fuzzy Sets Theory. Springer, Berlin, (2012). [CrossRef] [Google Scholar]
  • K.T. Atanassov, Geometric interpretation of the elements of the intuitionistic fuzzy objects. Int. J. Bioautomation 20 (2016) S27–S42. [Google Scholar]
  • K.T. Atanassov, P.M. Vassilev and R.T. Tsvetkov, Intuitionistic Fuzzy Sets. Measures and Integrals. Professor Marin Drinov Academic Publishing House, Sofia (2013). [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment. Manage. Sci. 17 (1970) 141–164. [Google Scholar]
  • S.K. Bharti and S.R. Singh, Transportation problem under interval-valued intuitionistic fuzzy environment. Int. J. Fuzzy Syst. 20 (2018) 1511–1522. [CrossRef] [Google Scholar]
  • E. Boltruk, Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm. J. Enterp. Inf. Manage. 31 (2018) 550–564. [CrossRef] [Google Scholar]
  • E. Celik and E. Akyuz, An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: the case of ship loader. Ocean Eng. 155 (2018) 371–381. [CrossRef] [Google Scholar]
  • S. Chanas and D. Kuchata, A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 82 (1996) 299–305. [CrossRef] [Google Scholar]
  • S. Chanas, W. Kolodziejczyk and A. Machaj, A fuzzy approach to the transportation problem. Fuzzy Sets Syst. 13 (1984) 211–221. [CrossRef] [Google Scholar]
  • T.-Y. Chen, An outranking approach using a risk attitudinal assignment model involving Pythagorean fuzzy information and its application to financial decision making. Appl. Soft Comput. 71 (2018) 460–487. [CrossRef] [Google Scholar]
  • D.S. Dinagar and K. Palanivel, The transportation problem in fuzzy environment. Int. J. Algorithms Comput. Math. 2 (2009) 65–71. [Google Scholar]
  • H. Garg, Anew improved score function of an interval valued Pythagorean fuzzy set based topsis method. Int. J. Uncertainty Quant. 7 (2017) 463–474. [CrossRef] [Google Scholar]
  • H. Garg, A linear programming method based on an improved score function for interval valued Pythagorean fuzzy numbers and its application to decision-making. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 26 (2018) 67–80. [CrossRef] [Google Scholar]
  • Y. Geng, P. Liu, F. Teng and Z. Liu, Pythagorean fuzzy uncertain linguistic TODIM method and their application to multiple criteria group decision making. Int. J. Intell. Syst. 33 (2017) 3383–3395. [Google Scholar]
  • X. Gou, Z. Xu and H. Liao, Alternative queuing method for multiple criteria decision making with hybrid fuzzy and ranking information. Inf. Sci. 357 (2016) 144–160. [CrossRef] [Google Scholar]
  • G. Gupta and A. Kumari, An efficient method for solving intuitionistic fuzzy transportation problem of type-2. Int. J. Appl. Comput. Math. 3 (2017) 3795–3804. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Hashmi, S.A. Jalil and S. Javaid, A model for two stage fixed charge transportation problem with multiple objectives and fuzzy linguistic preferences. Soft Comput. 23 (2019) 12401–12415. [CrossRef] [Google Scholar]
  • F.L. Hitchcock, The distribution of product from several resources to numerous localities. J. Math. Phys. 20 (1941) 224–230. [CrossRef] [Google Scholar]
  • N. Jing, S. Xian and Y. Xiao, Pythagorean triangular fuzzy linguistic bonferroni mean operators and their application for multi-attribute decision making, in 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). IEEE (2017) 435–439. [Google Scholar]
  • A. Kaur and A. Kumar, A new method for solving fuzzy transportation problems using ranking function. Appl. Math. Model. 35 (2011) 5652–5661. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Korukoglu and S. Balli, A improved Vogel’s approximation method for the transportation problem. Math. Comput. Appl. 16 (2011) 370–381. [Google Scholar]
  • P.S. Kumar, PSK method for solving intuitionistic fuzzy solid transportation problems. Int. J. Fuzzy Syst. Appl. 7 (2018) 62–99. [Google Scholar]
  • R. Kumar, S.A. Edalatpanah, S. Jha and R. Singh, A Pythagorean fuzzy approach to the transportation problem. Complex Intell. Syst. 5 (2019) 255–263. [CrossRef] [Google Scholar]
  • P. Kundu, S. Kar and M. Maiti, Fixed charge transportation problem with type-2 fuzzy variables. Inf. Sci. 255 (2014) 170–186. [CrossRef] [Google Scholar]
  • L. Li and K.K. Lai, A fuzzy approach to the multiobjective transportation problem. Comput. Oper. Res. 27 (2000) 43–57. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Li, G. Wei and M. Lu, Pythagorean fuzzy hamy mean operators in multiple attribute group decision making and their application to supplier selection. Symmetry 10 (2018) 505. [CrossRef] [Google Scholar]
  • Y.-L. Lin, L.-H. Ho, S.-L. Yeh and T.-Y. Chen, A Pythagorean fuzzy topsis method based on novel correlation measures and its application to multiple criteria decision analysis of inpatient stoke rehabilitiation. Int. J. Comput. Intell. Syst. 12 (2018) 410–425. [CrossRef] [Google Scholar]
  • S.T. Liu and C. Kao, Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153 (2004) 661–647. [CrossRef] [Google Scholar]
  • P. Liu, L. Yang, L. Wang and S. Li, A solid transportation problem with type-2 fuzzy variables. Appl. Soft Comput. 24 (2014) 543–558. [CrossRef] [Google Scholar]
  • Z. Ma and Z. Xu, Symmetric Pythagoreanbfuzzy weighted geo-metric/averaging operators and their application in multicriteria decision-making problems. Int. J. Intell. Syst. 31 (2016) 1198–1219. [CrossRef] [Google Scholar]
  • P. Pandian and G. Natarajan, A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Appl. Math. Sci. 4 (2010) 79–90. [Google Scholar]
  • J. Qin, Generalized Pythagorean fuzzy maclaurin symmetric means and its application to multiple attribute sir group decision model. Int. J. Fuzzy Syst. 20 (2018) 943–957. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Senapati and R.R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 85 (2019) 112–121. [CrossRef] [Google Scholar]
  • T. Senapati and R.R. Yager, Fermatean fuzzy sets. J. Ambient Intell. Humanized Comput. 11 (2020) 663–674. [CrossRef] [Google Scholar]
  • S.K. Singh and S.P. Yadav, A new approach for solving intuitionistic fuzzy transportation problem of type-2. Ann. Oper. Res. 243 (2016) 349–363. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Tada and H. Ishii, An integer fuzzy transportation problem. Comput. Math. Appl. 31 (1996) 71–87. [CrossRef] [MathSciNet] [Google Scholar]
  • S.-P. Wan, S.-Q. Li and J.-Y. Dong, A three phase method for Pythagorean fuzzy multi attribute group decision making and application to haze management. Comput. Ind. Eng. 123 (2018) 348–363. [CrossRef] [Google Scholar]
  • R.R. Yager, Pythagorean fuzzy subsets 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) (2013) 57–61 [Google Scholar]
  • R.R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22 (2014) 958–965. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]
  • X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int. J. Intell. Syst. 31 (2016) 593–611. [CrossRef] [Google Scholar]
  • X. Zhang and Z. Xu, Extention of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29 (2014) 1061–1078. [CrossRef] [Google Scholar]
  • J. Zhou, W. Su, T. Balezentis and D. Streimikiene, Multiple criteria group decision making considering symmetry with regards to the positive and negative ideal solution via the Pythagorean normal cloud model for application to economic decision. symmetry 10 (2018) 140. [CrossRef] [Google Scholar]
  • H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.