Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 263 - 290
DOI https://doi.org/10.1051/ro/2023008
Published online 28 February 2023
  • Y. Sheffi and J.B. Rice Jr, A supply chain view of the resilient enterprise. MIT Sloan Manage. Rev. 47 (2005) 41. [Google Scholar]
  • R. Baki, An integrated, multi-criteria approach based on environmental, economic, social, and competency criteria for supplier selection. RAIRO: Oper. Res. 55 (2021) 1487–1500. [Google Scholar]
  • K. Zekhnini, A. Cherrafi, I. Bouhaddou, Y. Benghabrit and J.A. Garza-Reyes, Supply chain management 4.0: a literature review and research framework. Benchmarking: Int. J. 28 (2020) 465–501. [CrossRef] [Google Scholar]
  • Z. Guo, H. Liu, D. Zhang and J. Yang, Green supplier evaluation and selection in apparel manufacturing using a fuzzy multi-criteria decision-making approach. Sustainability 9 (2017) 650. [Google Scholar]
  • C.-N. Wang, Y.-F. Huang, I. Cheng and V.T. Nguyen, A multi-criteria decision-making (MCDM) approach using hybrid SCOR metrics, AHP, and TOPSIS for supplier evaluation and selection in the gas and oil industry. Processes 6 (2018) 252. [CrossRef] [Google Scholar]
  • A. Banerjee, Agile supply chain management, Supply Chain and Logistics Management: Concepts, Methodologies, Tools, and Applications. Hershey PA, USA, Business Science Reference (2020) 1722–1740. [Google Scholar]
  • H. Fazlollahtabar and N. Kazemitash, Design of Fazl-Tash novel method for sustainable resilient comprehensive supplier selection problem. Kybernetes 51 (2022) 275–301. [CrossRef] [Google Scholar]
  • M. Keshavarz Ghorabaee, M. Amiri, E.K. Zavadskas and J. Antucheviciene, Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Econ. Research-Ekonomska istraživanja 30 (2017) 1073–1118. [CrossRef] [Google Scholar]
  • W. Ho, X. Xu and P.K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202 (2010) 16–24. [Google Scholar]
  • M.E. Banihabib, F.-S. Hashemi-Madani and A. Forghani, Comparison of compensatory and non-compensatory multi criteria decision making models in water resources strategic management. Water Res. Manage. 31 (2017) 3745–3759. [Google Scholar]
  • I. Vinogradova, Multi-attribute decision-making methods as a part of mathematical optimization. Mathematics 7 (2019) 915. [Google Scholar]
  • M.A. Kaviani, A.K. Yazdi, L. Ocampo and S. Kusi-Sarpong, An integrated grey-based multi-criteria decision-making approach for supplier evaluation and selection in the oil and gas industry. Kybernetes 49 (2020) 406–441. [Google Scholar]
  • S. Zakeri, P. Chatterjee, N. Cheikhrouhou and D. Konstantas, Ranking based on optimal points and win-loss-draw multi-criteria decision-making with application to supplier evaluation problem. Expert Sys. App. 191 (2022) 116258. [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (Gen.) 120 (1957) 253–281. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • H. Shabanpour, A. Fathi, S. Yousefi and R.F. Saen, Ranking sustainable suppliers using congestion approach of data envelopment analysis. J. Cleaner Prod. 240 (2019) 118190. [Google Scholar]
  • Y. Shen, E. Hermans, T. Brijs and G. Wets, Data envelopment analysis for composite indicators: a multiple layer model. Soc. Indic. Res. 114 (2013) 739–756. [Google Scholar]
  • N. Zarbakhshnia and T.J. Jaghdani, Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: a plastic case study. Int. J. Adv. Manuf. Technol. 97 (2018) 2933–2945. [Google Scholar]
  • S.J. Ghoushchi, M.D. Milan and M.J. Rezaee, Evaluation and selection of sustainable suppliers in supply chain using new GP-DEA model with imprecise data. J. Ind. Eng. Int. 14 (2018) 613–625. [Google Scholar]
  • M. Tavana, A. Shaabani, F.J. Santos-Arteaga and N. Valaei, An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics. Environ. Sci. Pollut. Res. 28 (2021) 53953–53982. [Google Scholar]
  • S.A. Nasri, B. Ehsani, S.J. Hosseininezhad and N. Safaie, A sustainable supplier selection method using integrated Fuzzy DEMATEL–ANP–DEA approach (case study: Petroleum Industry). Environ. Dev. Sustain. (2022) 1–37. DOI: 10.1007/s10668-022-02590-2. [Google Scholar]
  • Z. Desi-Nezhad, F. Sabouhi and M.H. Dehghani Sadrabadi, An optimization approach for disaster relief network design under uncertainty and disruption with sustainability considerations. RAIRO: Oper. Res. 56 (2022) 751–768. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P.V. Zhukov, A.A. Silvanskiy, K.Y. Mukhin and O.L. Domnina, Agile supply chain management in multinational corporations: opportunities and barriers. Int. J. Supply Chain Manage. 8 (2019) 416–425. [Google Scholar]
  • M. Dursun and O. Ogunclu, Agile supplier evaluation using hierarchical TOPSIS method. WSEAS Trans. Inf. Sci. App. 18 (2021) 12–19. [Google Scholar]
  • M. Kumar, D. Garg and A. Agarwal, Fuzzy DEMATEL approach for agile supplier selections performance criteria. J. Phys. Conf. Ser. 1240 (2019) 012157. [CrossRef] [Google Scholar]
  • M. Abdollahi, M. Arvan and J. Razmi, An integrated approach for supplier portfolio selection: Lean or agile? Expert Syst. App. 42 (2015) 679–690. [CrossRef] [Google Scholar]
  • M.H.D. Sadrabadi, R. Ghousi and A. Makui, Designing a disruption-aware supply chain network considering precautionary and contingency strategies: a real-life case study. RAIRO: Oper. Res. 55 (2021) 2827–2860. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M.H.D. Sadrabadi, A. Jafari-Nodoushan and A. Bozorgi-Amiri, Resilient supply chain under risks: a network and structural perspective. Iran. J. Manag. Stud. 14 (2021) 735–760. [Google Scholar]
  • M. Falasca, C.W. Zobel and D. Cook, A decision support framework to assess supply chain resilience, in Proceedings of the 5th International ISCRAM Conference. Washington, DC (2008). [Google Scholar]
  • D. Pamucar, M. Yazdani, R. Obradovic, A. Kumar and M. Torres-Jiménez, A novel fuzzy hybrid neutrosophic decision-making approach for the resilient supplier selection problem. Int. J. Intell. Syst. 35 (2020) 1934–1986. [CrossRef] [Google Scholar]
  • P. Sureeyatanapas, N. Waleekhajornlert, S. Arunyanart and T. Niyamosoth, Resilient supplier selection in electronic components procurement: an integration of evidence theory and rule-based transformation into TOPSIS to tackle uncertain and incomplete information. Symmetry 12 (2020) 1109. [CrossRef] [Google Scholar]
  • R. Davoudabadi, S.M. Mousavi, V. Mohagheghi and B. Vahdani, Resilient supplier selection through introducing a new interval-valued intuitionistic fuzzy evaluation and decision-making framework. Arabian J. Sci. Eng. 44 (2019) 7351–7360. [CrossRef] [Google Scholar]
  • M. Abedian, A. Saghafinia and M. Hejazi, A fuzzy analysis approach to green-resilient supplier selection in electronic manufacturing systems. Cybern. Syst. (2022) 1–27. [CrossRef] [Google Scholar]
  • M.H. Dehghani Sadrabadi, R. Ghousi and A. Makui, An enhanced robust possibilistic programming approach for forward distribution network design with the aim of establishing social justice: a real-world application. J. Ind Syst. Eng. 12 (2019) 76–106. [Google Scholar]
  • J. Mula, R. Poler, J.P. Garca-Sabater and F.C. Lario, Models for production planning under uncertainty: a review. Int. J. Prod. Econ. 103 (2006) 271–285. [CrossRef] [Google Scholar]
  • D.P. Thunnissen, Uncertainty classification for the design and development of complex systems, 3rd Annual Predictive Methods Conference. Citeseer (2003). [Google Scholar]
  • N. Sahebjamnia, Resilient supplier selection and order allocation under uncertainty. Sci. Iran. 27 (2020) 411–426. [Google Scholar]
  • N. Vahabzadeh Najafi, A. Arshadi Khamseh and A. Mirzazadeh, An integrated sustainable and flexible supplier evaluation model under uncertainty by game theory and subjective/objective data: Iranian casting industry. Global J. Flexible Syst. Manage. 21 (2020) 309–322. [CrossRef] [Google Scholar]
  • O. Solgi, J. Gheidar-Kheljani, E. Dehghani and A. Taromi, Resilient supplier selection in complex products and their subsystem supply chains under uncertainty and risk disruption: a case study for satellite components. Sci. Iran. 28 (2021) 1802–1816. [Google Scholar]
  • G. Wei and J. Wang, A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst. App. 81 (2017) 28–38. [CrossRef] [Google Scholar]
  • Y.-B. Ji and C. Lee, Data envelopment analysis. Stat. J. 10 (2010) 267–280. [CrossRef] [Google Scholar]
  • H. Zhou, Y. Yang, Y. Chen and J. Zhu, Data envelopment analysis application in sustainability: the origins, development and future directions. Eur. J. Oper. Res. 264 (2018) 1–16. [Google Scholar]
  • A. Boussofiane, R.G. Dyson and E. Thanassoulis, Applied data envelopment analysis. Eur. J. Oper. Res. 52 (1991) 1–15. [CrossRef] [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
  • Y. Yamada, An inefficiency measurement method for management systems. J. Oper. Res. Soc. Jpn. 37 (1994) 158–167. [Google Scholar]
  • E. Dehghani, M.S. Jabalameli, M.S. Pishvaee and A. Jabarzadeh, Integrating information of the efficient and anti-efficient frontiers in DEA analysis to assess location of solar plants: a case study in Iran. J. Ind. Syst. Eng. 11 (2018) 163–179. [Google Scholar]
  • J.M. Mulvey, R.J. Vanderbei and S.A. Zenios, Robust optimization of large-scale systems. Oper. Res. 43 (1995) 264–281. [Google Scholar]
  • M. Yazdani, A.E. Torkayesh and P. Chatterjee, An integrated decision-making model for supplier evaluation in public healthcare system: the case study of a Spanish hospital. J. Enterp. Inf. Manage. 33 (2020) 965–989. [CrossRef] [Google Scholar]
  • T.J. Pettit, K.L. Croxton and J. Fiksel, The evolution of resilience in supply chain management: a retrospective on ensuring supply chain resilience. J. Bus. Logistics 40 (2019) 56–65. [CrossRef] [Google Scholar]
  • C.-J. Chen, Developing a model for supply chain agility and innovativeness to enhance firms’ competitive advantage. Manage. Decis. 57 (2019) 1511–1534. [CrossRef] [Google Scholar]
  • J. Um, Improving supply chain flexibility and agility through variety management. Int. J. Logistics Manage. 28 (2017) 164–487. [Google Scholar]
  • D. Eckstein, M. Goellner, C. Blome and M. Henke, The performance impact of supply chain agility and supply chain adaptability: the moderating effect of product complexity. Int. J. Prod. Res. 53 (2015) 3028–3046. [CrossRef] [Google Scholar]
  • S.A. Torabi, R. Giahi and N. Sahebjamnia, An enhanced risk assessment framework for business continuity management systems. Saf. Sci. 89 (2016) 201–218. [CrossRef] [Google Scholar]
  • N. Sahebjamnia, S.A. Torabi and S.A. Mansouri, Building organizational resilience in the face of multiple disruptions. Int. J. Prod. Econ. 197 (2018) 63–83. [CrossRef] [Google Scholar]
  • M. Kamalahmadi and M.M. Parast, A review of the literature on the principles of enterprise and supply chain resilience: major findings and directions for future research. Int. J. Prod. Econ. 171 (2016) 116–133. [CrossRef] [Google Scholar]
  • C.S. Singh, G. Soni and G.K. Badhotiya, Performance indicators for supply chain resilience: review and conceptual framework. J. Ind. Eng. Int. 15 (2019) 105–117. [CrossRef] [Google Scholar]
  • D. Bertsimas, V. Gupta and N. Kallus, Data-driven robust optimization. Math. Program. 167 (2018) 235–292. [CrossRef] [MathSciNet] [Google Scholar]
  • I.I. Almaraj and T.B. Trafalis, A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect quality production. Ann. Oper. Res. 319 (2022) 1479–1505. [CrossRef] [MathSciNet] [Google Scholar]
  • C.-S. Yu and H.-L. Li, A robust optimization model for stochastic logistic problems. Int. J. Prod. Econ. 64 (2000) 385–397. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.