Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 237 - 261
DOI https://doi.org/10.1051/ro/2023005
Published online 22 February 2023
  • N. Absi, S. Dauzère-Pérès, S. Kedad-Sidhoum, B. Penz and C. Rapine, Lot sizing with carbon emission constraints. Eur. J. Oper. Res. 227 (2013) 55–61. [Google Scholar]
  • M. Alinezhad, I. Mahdavi, M. Hematian and E.B. Tirkolaee, A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries. Environ. Dev. Sustain. 24 (2022) 1–28. [Google Scholar]
  • H. Barman, M. Pervin and S.K. Roy, Impacts of green and preservation technology investments on a sustainable EPQ model during COVID-19 pandemic. RAIRO: Oper. Res. 56 (2022) 2245–2275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Bonney and M.Y. Jaber, Environmentally responsible inventory models: non-classical models for a non-classical era. Int. J. Prod. Econ. 133 (2011) 43–53. [CrossRef] [Google Scholar]
  • Y. Bouchery, A. Ghaffari, Z. Jemai and Y. Dallery, Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222 (2012) 229–240. [Google Scholar]
  • R.P. Covert and G.C. Philip, An EOQ model for items with Weibull distribution deterioration. AIIE Trans. 5 (1973) 323–326. [Google Scholar]
  • S.S. Darvazeh, F.M. Mooseloo, H.R. Vandchali, H. Tomášková and E.B. Tirkolaee, Correction to: An integrated multi-criteria decision-making approach to optimize the number of leagile-sustainable suppliers in supply chains. Environ. Sci. Pollut. Res. 29 (2022) 66979–67001. [CrossRef] [PubMed] [Google Scholar]
  • S.K. Das, M. Pervin, S.K. Roy and G.W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. (2021). DOI: 10.1007/s10479-020-03809-z. [Google Scholar]
  • U. Dave and L.K. Patel, (T, Sj) policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 32 (1981) 137–142. [Google Scholar]
  • J.K. Dey, S.K. Mondal and M. Maiti, Two storage inventory problem with dynamic demand and interval valued lead-time over finifte time horizon under time-value money. Eur. J. Oper. Res. 185 (2008) 170–194. [CrossRef] [Google Scholar]
  • K.V. Geetha and R. Uthayakumar, Optimal lot-sizing policy for non-instantaneous deteriorating items with price and advertisement dependent demand under partial backlogging. Int. J. Appl. Comput. Math. 2 (2016) 171–193. [CrossRef] [MathSciNet] [Google Scholar]
  • P.M. Ghare and G.F. Schrader, A model for an exponential decaying inventory. J. Ind. Eng. 14 (1963) 238–243. [Google Scholar]
  • M. Ghoreishi, A. Mirzazadeh and G.W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns. J. Math. Program. Oper. Res. 63 (2013) 1785–1804. [Google Scholar]
  • B.C. Giri, A. Goswami and K.S. Chaudhuri, An EOQ model for deteriorating items with time-varying demand and costs. J. Oper. Res. Soc. 47 (1996) 1398–1405. [CrossRef] [Google Scholar]
  • M. Goh, EOQ models with general demand and holding costs functions. Eur. J. Oper. Res. 73 (1994) 50–54. [CrossRef] [Google Scholar]
  • R. Hammami, I. Nouira and Y. Frein, Carbon emissions in a multi-echelon production-inventory model with lead time constraints. Int. J. Prod. Econ. 164 (2015) 292–307. [Google Scholar]
  • R.M. Hill, Inventory model for increasing demand followed by level demand. J. Oper. Res. Soc. 46 (1995) 1250–1259. [CrossRef] [Google Scholar]
  • S. Khalilpourazari and H.H. Doulabi, Robust modelling and prediction of the COVID-19 pandemic in Canada. Int. J. Prod. Res. (2021) 1–17. DOI: 10.1080/00207543.2021.1936261. [Google Scholar]
  • S. Khalilpourazari and S.H.R. Pasandideh, Multi-objective optimization of multi-item EOQ model with partial backordering and defective batches and stochastic constraints using MOWCA and MOGWO. Oper. Res. 20 (2020) 1729–1761. [Google Scholar]
  • S. Khalilpourazari and S.H.R. Pasandideh, Designing emergency flood evacuation plans using robust optimization and artificial intelligence. J Comb. Optim. 41 (2021) 640–677. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Khalilpourazari, S.H.R. Pasandideh and S.T.A. Niaki, Optimizing a multi-item economic order quantity problem with imperfect items, inspection errors, and backorders. Soft Comput. 23 (2019) 11671–11698. [CrossRef] [Google Scholar]
  • S. Khalilpourazari, S. Teimoori, A. Mirzazadeh, S.H.R. Pasandideh and N.G. Tehrani, Robust Fuzzy chance constraint programming for multi-item EOQ model with random disruption and partial backordering under uncertainty. J. Ind. Prod. Eng. 36 (2019) 276–285. [Google Scholar]
  • S. Khalilpourazari, A.Ö. Çiftçioglu and G.W. Weber, Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence. J. Intell. Manuf. 32 (2021) 1621–1647. [CrossRef] [Google Scholar]
  • S. Khanra, S.K. Ghosh and K.S. Chaudhuri, An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in peyment. Appl. Math. Comput. 218 (2011) 1–9. [MathSciNet] [Google Scholar]
  • V. Kumar and S.R. Singh, A finite horizon inventory model with life time, power demand pattarn and lost sales. Int. J. Math. Sci. 10 (2011) 435–446. [Google Scholar]
  • R. Maihami and I.N.K. Abadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Math. Comput. Modell. 55 (2012) 1722–1733. [CrossRef] [Google Scholar]
  • S.K. Manna and K.S. Chaudhuri, An EOQ model with ramp type demand rate, time dependent deterioratoin rate, unit production cost and shortages. Eur. J. Oper. Res. 171 (2006) 557–566. [CrossRef] [Google Scholar]
  • A.H.M. Mashud, M. Pervin, U. Mishra, Y. Daryanto, M.L. Tseng and M.K. Lim, A sustainable inventory model with controllable carbon emissions in green-warehouse farms. J. Cleaner Prod. 298 (2021) 126777. [CrossRef] [Google Scholar]
  • V.K. Mishra, Deterirating inventory model with controllable deterioration rate for time-dependent demand and time-varing holding cost. Yugoslav J. Oper. Res. 24 (2014) 87–98. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Mohammadi and S. Khalilpourazari, Minimizing makespan in a single machine scheduling problem with deteriorating jobs and learning effects, in Proceedings of the 6th International Conference on Software and Computer Applications (2017) 310–315. DOI: 10.1145/3056662.3056715. [Google Scholar]
  • L.Y. Ouyang, K.S. Wu and M.C. Cheng, An inventory model for deteriorating items with exponential declining demand and partial backlogging. Yugoslav J. Oper. Res. 15 (2005) 227–288. [Google Scholar]
  • L.Y. Ouyang, K.S. Wu and C.T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Comput. Ind. Eng. 51 (2006) 637–651. [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, G.W. Weber and A. Mirzazadeh, Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO: Oper. Res. 55 (2021) S2575–S2592. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, N. Maculan and G.W. Weber, A green inventory model with the effect of carbon taxation. Ann. Oper. Res. 309 (2022) 233–248. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, G.W. Weber and A. Mirzazadeh, Effect of multiple prepayments and green investment on an EPQ model. J. Ind. Manage. Optim. (2022). DOI: 10.3934/jimo.2022234. [Google Scholar]
  • M. Pervin, G.C. Mahata and S.K. Roy, An inventory model with demand declining market for deteriorating items under trade credit policy. Int. J. Manage. Sci. Eng. Manage. 11 (2016) 243–251. [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numer. Algebra Control Optim. 7 (2017) 21–50. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varing holding cost including stochastic deterioration. Ann. Oper. Res. 260 (2018) 437–460. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numer. Algebra Control Optim. 8 (2018) 169–191. [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: a trade-credit policy. J. Ind. Manage. Optim. 15 (2019) 1345. [Google Scholar]
  • R.J. Porwal, C.S. Prasad, D. Pandey and Shiva, An inventory model for time dependent deterioration, selling price dependent demand and quadratic varying hoding cost. Int. J. Appl. Math. Appl. 3 (2011) 121–128. [Google Scholar]
  • V.S. Rajput, Y. Kumar, A.K. Vats and R. Kaur, An EOQ model with polynomial of N-th degree demand rate, constant deterioration, linear holding cost and without Shortages under inflation. IOSR J. Math. 12 (2016) 87–92. [CrossRef] [Google Scholar]
  • S.K. Roy, M. Pervin and G.W. Weber, A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy. J. Ind. Manage. Optim. 16 (2020) 153. [Google Scholar]
  • M. Sarkar and B. Sarkar, How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system? J. Cleaner Prod. 262 (2020) 121200. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Sarkar, B. Ganguly and L.E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management. Int. J. Prod. Econ. 231 (2021) 107867. [CrossRef] [Google Scholar]
  • B.R. Sarker, S. Mukherjee and C.V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration. Int. J. Prod. Econ. 48 (1997) 227–236. [CrossRef] [Google Scholar]
  • E. Savku and G.W. Weber, A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J. Opt. Theory App. 179 (2018) 696–721. [CrossRef] [Google Scholar]
  • T. Shu, Q. Wu, S. Chen, S. Wang, K.K. Lai and H. Yang, Manufactuerers’/remanufacturers’ inventory control strategies with cap-and-trade regulation. J. Cleaner Prod. 159 (2017) 11–25. [CrossRef] [Google Scholar]
  • K. Skouri, S. Konstantanras and I. Ganas, Inventory model with ramp type demand rate, partial backlogging and Weibull deterioration rate. Eur. J. Oper. Res. 192 (2009) 79–92. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, V.R. Soleymanfar and K. Govindan, Sustainable economic production quantity models for inventory systems with shortage. J. Cleaner Prod. 174 (2018) 1011–1020. [CrossRef] [Google Scholar]
  • S. Tayal, S.R. Singh, R. Sharma and A.P. Singh, An EPQ model for non-instantaneous deteriorating item with time dependend holding cost and exponential demand rate. Int. J. Oper. Res. 23 (2015) 145–162. [CrossRef] [MathSciNet] [Google Scholar]
  • B.Z. Temocin and G.W. Weber, Optimal control of stochastic hybrid system with jumps: a numerical approximation. J. Comput. Appl. Math. 259 (2014) 443–451. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Tiwari, W. Ahmed and B. Sarkar, Multi-item sustainable green production system under trade-credit and partial backordering. J. Cleaner Prod. 204 (2018) 82–95. [Google Scholar]
  • C.K. Tripathy and U. Mishra, Ordering policy for Weilbull deteriorating items for quadratic demand with permissible delay in payment. Appl. Math. Sci. 4 (2010) 2181–2191. [MathSciNet] [Google Scholar]
  • S.I. Ukil, M.E. Islam and M.S. Uddin, A production inventory model of power demand and constant production rate where the products have finite shelf life. J. Serv. Sci. Manage. 8 (2015) 874–885. [Google Scholar]
  • G.W. Weber and E. Savku, A prodForeword of the Book Renewable Energy and Electric Resources for Sustainable Rural Development. IGI Global, Hershey PA, USA (2017). https://link.springer.com/article/10.1007/s10957-017-1144-x. [Google Scholar]
  • T.M. Whitin, Theory of Inventory Managment. Princeton University Press, Princeton, NJ (1957) 62–63. [Google Scholar]
  • K.S. Wu, L.Y. Ouyang and C.T. Yang, An optimal replenishment policy for non-instsntaneous deteriorating items with stock-dependent demand and partial backlogging. Int. J. Prod. Econ. 101 (2006) 369–384. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.