Open Access
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 183 - 200
Published online 08 February 2023
  • C. Alves and J.M. Valério de Carvalho, A branch-and-price-and-cut algorithm for the pattern minimization problem. RAIRO: Oper. Res. 42 (2008) 435–453. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P.R.d.L. Andrade, S.A. de Araujo, A.C. Cherri and F.K. Lemos, The integrated lot sizing and cutting stock problem in an automotive spring factory. Appl. Math. Model. 91 (2021) 1023–1036. [CrossRef] [MathSciNet] [Google Scholar]
  • K.A.G.d. Araújo, T.d.O.E. Bonates and B.d.A. Prata, The integrated cutting and packing heterogeneous precast beams multiperiod production planning problem. RAIRO: Oper. Res. 55 (2021) 2491–2524. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • G. Belov and G. Scheithauer, A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper. Res. 171 (2006) 85–106. [CrossRef] [Google Scholar]
  • N. Braga, C. Alves, R. Macedo and J.M. Valério de Carvalho, Combined cutting stock and scheduling: A matheuristic approach. Int. J. Innov. Comput. Appl. 7 (2016) 135–146. [CrossRef] [Google Scholar]
  • F. Brandao and J.P. Pedroso, Bin packing and related problems: General arc-flow formulation with graph compression. Comput. Oper. Res. 69 (2016) 56–67. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Cambazard and B. O’Sullivan, Propagating the bin packing constraint using linear programming, in International Conference on Principles and Practice of Constraint Programming, Springer (2010) 129–136. [Google Scholar]
  • M.M. Christofoletti, S.A. de Araujo and A.C. Cherri, Integrated lot-sizing and cutting stock problem applied to the mattress industry. J. Oper. Res. Soc. 72 (2021) 1279–1293. [CrossRef] [Google Scholar]
  • F. Clautiaux, S. Hanafi, R. Macedo, M.-E. Voge and C. Alves, Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints. Eur. J. Oper. Res. 258 (2017) 467–477. [CrossRef] [Google Scholar]
  • J.F. Côté and M. Iori, The meet-in-the-middle principle for cutting and packing problems. INFORMS J. Comput. 30 (2018) 646–661. [CrossRef] [MathSciNet] [Google Scholar]
  • V.L. de Lima, C. Alves, F. Clautiaux, M. Iori and J.M. Valério de Carvalho, Arc flow formulations based on dynamic programming: Theoretical foundations and applications. Eur. J. Oper. Res. 296 (2022) 3–21. [CrossRef] [Google Scholar]
  • M. Delorme and M. Iori, Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems. INFORMS J. Comput. 32 (2020) 101–119. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Delorme, M. Iori and S. Martello, Bin packing and cutting stock problems: Mathematical models and exact algorithms. Eur. J. Oper. Res. 255 (2016) 1–20. [CrossRef] [Google Scholar]
  • M. Delorme, M. Iori and S. Martello, Logic based Benders’ decomposition for orthogonal stock cutting problems. Comput. Oper. Res. 78 (2017) 290–298. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Delorme, M. Iori and N.F. Mendes, Solution methods for scheduling problems with sequence-dependent. Eur. J. Oper. Res. 295 (2021) 823–837. [CrossRef] [Google Scholar]
  • D.N. do Nascimento, S.A. de Araujo and A.C. Cherri, Integrated lot-sizing and one-dimensional cutting stock problem with usable leftovers. Ann. Oper. Res. 316 (2022) 785–803. [CrossRef] [MathSciNet] [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Prog. 9120 (2002) 1–213. [Google Scholar]
  • H. Dyckhoff, A new linear programming approach to the cutting stock problem. Oper. Res. 29 (1981) 1092–1104. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Dyckhoff, A typology of cutting and packing problems. Eur. J. Oper. Res. 44 (1990) 145–159. DOI: 10.1016/0377-2217(90)90350-K. [CrossRef] [Google Scholar]
  • J. Erjavec, M. Gradišar and P. Trkman, Renovation of the cutting stock process. Int. J. Prod. Res. 47 (2009) 3979–3996. [CrossRef] [Google Scholar]
  • P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9 (1961) 849–859. [CrossRef] [Google Scholar]
  • P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem – part ii. Oper. Res. 11 (1963) 863–888. [CrossRef] [Google Scholar]
  • N. Goulart, T.F. Noronha, M.G. Ravetti and M.C. de Souza, The integrated uncapacitated lot sizing and bin packing problem. RAIRO: Oper. Res. 55 (2021) 1197–1212. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J. Kallrath, S. Rebennack, J. Kallrath and R. Kusche, Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges. Eur. J. Oper. Res. 238 (2014) 374–389. [CrossRef] [Google Scholar]
  • L.V. Kantorovich, Mathematical methods of organizing and planning production. Manag. Sci. 6 (1960) 366–422. [CrossRef] [Google Scholar]
  • E.S. Kokten and Ç. Sel, A cutting stock problem in the wood products industry: A two-stage solution approach. Int. Trans. Oper. Res. (2020). DOI: 10.1111/itor.12802. [Google Scholar]
  • A. Kramer, M. Dell’Amico and M. Iori, Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines. Eur. J. Oper. Res. 275 (2019) 67–79. [CrossRef] [Google Scholar]
  • A. Kramer, M. Dell’Amico, D. Feillet and M. Iori, Scheduling jobs with release dates on identical parallel machines by minimizing the total weighted completion time. Comput. Oper. Res. 123 (2020) 105018. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Kramer, M. Iori and P. Lacomme, Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization. Eur. J. Oper. Res. 289 (2021) 825–840. [CrossRef] [Google Scholar]
  • R. Kramer and A. Kramer, An exact framework for the discrete parallel machine scheduling location problem. Comput. Oper. Res. 132 (2021) 105318. [CrossRef] [Google Scholar]
  • F.K. Lemos, A.C. Cherri and S.A. de Araujo, The cutting stock problem with multiple manufacturing modes applied to a construction industry. Int. J. Prod. Res. 59 (2021) 1088–1106. [CrossRef] [Google Scholar]
  • F.K. Lemos, A.C. Cherri, S.A. de Araujo and H.H. Yanasse, Minimizing saw cycles on the cutting stock problem with processing times depending on the cutting pattern. J. Oper. Res. Soc., accepted (2022). [Google Scholar]
  • N. Ma, Y. Liu and Z. Zhou, Two heuristics for the capacitated multi-period cutting stock problem with pattern setup cost. Comput. Oper. Res. 109 (2019) 218–229. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Maculan, M.d.M. Passini, J.A.d.M. Brito and I. Loiseau, Column-generation in integer linear programming. RAIRO: Oper. Res. 37 (2003) 67–83. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J. Martinovic, G. Scheithauer and J.M. Valério de Carvalho, A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems. Eur. J. Oper. Res. 266 (2018) 458–471. [CrossRef] [Google Scholar]
  • J. Martinovic, M. Delorme, M. Iori, G. Scheithauer and N. Strasdat, Improved flow-based formulations for the skiving stock problem. Comput. Oper. Res. 113 (2020) 104770. [CrossRef] [MathSciNet] [Google Scholar]
  • G.M. Melega, S.A. de Araujo and R. Jans, Classification and literature review of integrated lot-sizing and cutting stock problems. Eur. J. Oper. Res. 271 (2018) 1–19. [Google Scholar]
  • G.M. Melega, S.A. de Araujo and R. Morabito, Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems. Ann. Oper. Res. 295 (2020) 695–736. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Parreño, M.T. Alonso and R. Alvarez-Valdés, Solving a large cutting problem in the glass manufacturing industry. Eur. J. Oper. Res. 287 (2020) 378–388. [CrossRef] [Google Scholar]
  • K.C. Poldi and S.A. de Araujo, Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem. Ann. Oper. Res. 238 (2016) 497–520. [CrossRef] [MathSciNet] [Google Scholar]
  • S.C. Poltroniere, K.C. Poldi, F.M.B. Toledo and M.N. Arenales, A coupling cutting stock-lot sizing problem in the paper industry. Annals of Oper. Res. 157 (2008) 91–104. [Google Scholar]
  • B. Ramos, C. Alves and J.M. Valério de Carvalho, An arc flow formulation to the multitrip production, inventory, distribution, and routing problem with time windows. Int. Trans. Oper. Res. 29 (2022) 526–553. DOI: 10.1111/itor.12765. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Saeedi and R. Feizi, Modeling and optimization of batch production based on layout and cutting problems under uncertainty. RAIRO: Oper. Res. 55 (2021) 61–81. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M.C. Santoro and F.K. Lemos, Irregular packing: Milp model based on a polygonal enclosure. Ann. Oper. Res. 235 (2015) 693–707. [CrossRef] [MathSciNet] [Google Scholar]
  • C.d.A. Signorini, S.A. de Araujo and G.M. Melega, One-dimensional multi-period cutting stock problems in the concrete industry. Int. J. Prod. Res. 60 (2022) 2386–2403. [CrossRef] [Google Scholar]
  • Y. Song, J. Zhang, Z. Liang and C. Ye, An exact algorithm for the container drayage problem under a separation mode. Transp. Res. Part E: Log. Transp. Rev. 106 (2017) 231–254. [CrossRef] [Google Scholar]
  • R.S. Trindade, O.C.B. de Araújo and M. Fampa, Arc-flow approach for single batch-processing machine scheduling. Comput. Oper. Res. 134 (2021) 105394. [CrossRef] [Google Scholar]
  • J.M. Valério de Carvalho, Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 86 (1999) 629–659. [CrossRef] [MathSciNet] [Google Scholar]
  • J.M. Valério de Carvalho, LP models for bin packing and cutting stock problems. Eur. J. Oper. Res. 141 (2002) 253–273. [CrossRef] [Google Scholar]
  • P.H. Vance, Branch-and-price algorithms for the one-dimensional cutting stock problem. Comput. Optim. Appl. 9 (1998) 211–228. [CrossRef] [Google Scholar]
  • G. Wäscher, H. Haußner and H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183 (2007) 1109–1130. [CrossRef] [Google Scholar]
  • L.A. Wolsey, Valid inequalities, covering problems and discrete dynamic programs, in Annals of Discrete Mathematics . Vol. 1. Elsevier (1977) 527–538. [CrossRef] [Google Scholar]
  • D.A. Wuttke and H.S. Heese, Two-dimensional cutting stock problem with sequence dependent setup times. Eur. J. Oper. Res. 265 (2018) 303–315. [CrossRef] [Google Scholar]
  • H.H. Yanasse and M.J.P. Lamosa, An integrated cutting stock and sequencing problem. Eur. J. Oper. Res. 183 (2007) 1353–1370. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.