Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 59 - 85
DOI https://doi.org/10.1051/ro/2022206
Published online 12 January 2023
  • S. Nahmias, Perishable inventory theory: a review. Oper. Res. 30 (1982) 680–708. [Google Scholar]
  • M. Habibi-Kouchaksaraei, M.M. Paydar and E. Asadi-Gangraj, Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Appl. Math. Modell. 55 (2018) 583–599. [CrossRef] [Google Scholar]
  • T.M. Whitin, Inventory control and price theory. Manage. Sci. 2 (1955) 61–68. [Google Scholar]
  • R.C. Elston and J.C. Pickrel, A statistical approach to ordering and usage policies for a hospital blood bank. Transfusion 3 (1963) 41–47. [Google Scholar]
  • R.C. Elston and J.C. Pickrel, Guides to inventory levels for a hospital blood bank determined by electronic computer simulation. Transfusion 5 (1965) 465–470. [Google Scholar]
  • G.P. Prastacos, Blood inventory management: an overview of theory and practice. Manage. Sci. 30 (1984) 777–800. [Google Scholar]
  • W.P. Pierskalla, Supply chain management of blood banks, in Operations Research and Health Care.Springer, MA, Boston, 2005, pp. 103–145. [Google Scholar]
  • H.K. Rajagopalan, C. Saydam and J. Xiao, A multiperiod set covering location model for dynamic redeployment of ambulances. Comput. Oper. Res. 35 (2008) 814–826. [CrossRef] [Google Scholar]
  • J.C. Papageorgiou, Some operations research applications to problems of health care systems (a survey). Int. J. Bio-Med. Comput. 9 (1978) 101–114. [CrossRef] [Google Scholar]
  • A. Rais and A. Viana, Operations research in healthcare: a survey. Int. Trans. Oper. Res. 18 (2011) 1–31. [Google Scholar]
  • S.S. Syam and M.J. Côé, A location–allocation model for service providers with application to not-for-profit health care organizations. Omega 38 (2010) 157–166. [Google Scholar]
  • J. Beliën and H. Forcé, Supply chain management of blood products: a literature review. Eur. J. Oper. Res. 217 (2012) 1–16. [CrossRef] [Google Scholar]
  • A. Nagurney, A.H. Masoumi and M. Yu, Supply chain network operations management of a blood banking system with cost and risk minimization. Comput. Manage. Sci. 9 (2012) 205–231. [CrossRef] [Google Scholar]
  • Y. Sha and J. Huang, The multi-period location–allocation problem of engineering emergency blood supply systems. Syst. Eng. Proc. 5 (2012) 21–28. [Google Scholar]
  • Q. Duan and T.W. Liao, Optimization of blood supply chain with shortened shelf lives and ABO compatibility. Int. J. Prod. Econ. 153 (2014) 113–129. [CrossRef] [Google Scholar]
  • M. Arvan, R. Tavakkoli-Moghaddam and M. Abdollahi, Designing a bi-objective and multi-product supply chain network for the supply of blood. Uncertain Supply Chain Manage. 3 (2015) 57–68. [Google Scholar]
  • B. Fahimnia, A. Jabbarzadeh, A. Ghavamifar and M. Bell, Supply chain design for efficient and effective blood supply in disasters. Int. J. Prod. Econ. 183 (2017) 700–709. [CrossRef] [Google Scholar]
  • J. Beliën, L. De Boeck, J. Colpaert, S. Devesse and F. Van den Bossche, Optimizing the facility location design of organ transplant centers, Decis. Support Syst. 54 (2013) 1568–1579. [CrossRef] [Google Scholar]
  • M.R.G. Samani and S.-M. Hosseini-Motlagh, An enhanced procedure for managing blood supply chain under disruptions and uncertainties. Ann. Oper. Res. 283 (2019) 1413–1462. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Hosseinifard and B. Abbasi, The inventory centralization impacts on sustainability of the blood supply chain. Comput. Oper. Res. 89 (2018) 206–212. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Yates, S. Stanger, R. Wilding and S. Cotton, Approaches to assessing and minimizing blood wastage in the hospital and blood supply chain. ISBT Sci. Ser. 12 (2017) 91–98. [CrossRef] [Google Scholar]
  • A.F. Osorio, S.C. Brailsford, H.K. Smith and J. Blake, Designing the blood supply chain: how much, how and where?. Vox Sanguinis 113 (2018) 760–769. [Google Scholar]
  • M. Dehghani, B. Abbasi and F. Oliveira, Proactive transshipment in the blood supply chain: a stochastic programming approach. Omega 98 (2021) 102112. [Google Scholar]
  • S.-M. Hosseini-Motlagh, M.R. Ghatreh Samani and S. Homaei, Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real-life case). J. Ambient Intell. Human. Comput. 11 (2020) 1085–1104. [CrossRef] [Google Scholar]
  • N. Haghjoo, R. Tavakkoli-Moghaddam, H. Shahmoradi-Moghadam and Y. Rahimi, Reliable blood supply chain network design with facility disruption: a real-world application. Eng. App. Artif. Intell. 90 (2020) 103493. [CrossRef] [Google Scholar]
  • H. Sun, Y. Wang, Y. Xue, A bi-objective robust optimization model for disaster response planning under uncertainties. Comput. Ind. Eng. 155 (2021) 107213. [CrossRef] [Google Scholar]
  • S. Rajendran and A. Ravi Ravindran, Inventory management of platelets along blood supply chain to minimize wastage and shortage. Comput. Ind. Eng. 130 (2019) 714–730. [CrossRef] [Google Scholar]
  • F. Salehi, M. Mahootchi and S.M. Moattar Husseini, Developing a robust stochastic model for designing a blood supply chain network in a crisis: a possible earthquake in Tehran. Ann. Oper. Res. 283 (2019) 679–703. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Dillon, F. Oliveira and B. Abbasi, A two-stage stochastic programming model for inventory management in the blood supply chain. Int. J. Prod. Econ. 187 (2017) 27–41. [CrossRef] [Google Scholar]
  • B. Zahiri and M.S. Pishvaee, Blood supply chain network design considering blood group compatibility under uncertainty. Int. J. Prod. Res. 55 (2017) 2013–2033. [CrossRef] [Google Scholar]
  • M. Fazli-Khalaf, S. Khalilpourazari and M. Mohammadi, Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Ann. Oper. Res. 283 (2019) 1079–1109. [CrossRef] [MathSciNet] [Google Scholar]
  • U. Abdulwahab and M.I.M. Wahab, Approximate dynamic programming modeling for a typical blood platelet bank. Comput. Ind. Eng. 78 (2014) 259–270. [CrossRef] [Google Scholar]
  • S.C. Das, A.M. Zidan, A.K. Manna, A.A. Shaikh and A.K. Bhunia, An application of preservation technology in inventory control system with price dependent demand and partial backlogging. Alexandria Eng. J. 59 (2020) 1359–1369. [Google Scholar]
  • C.W. Kang, M. Imran, M. Omair, W. Ahmed, M. Ullah and B. Sarkar, Stochastic-petri net modeling and optimization for outdoor patients in building sustainable healthcare system considering staff absenteeism. Mathematics 7 (2019) 499. [Google Scholar]
  • S.K. Sardar, B. Sarkar and B. Kim, Integrating machine learning, radio frequency identification, and consignment policy for reducing unreliability in smart supply chain management. Processes 9 (2021) 247. [Google Scholar]
  • F. Behroozi, M.A.S. Monfared and S.M.H. Hosseini, Investigating the conflicts between different stakeholders’ preferences in a blood supply chain at emergencies: a trade-off between six objectives. Soft Comput. 25 (2021) 13389–13410. [Google Scholar]
  • K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18 (2013) 577–601. [Google Scholar]
  • R. Ramezanian and Z. Behboodi, Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transp. Res. Part E: Logistics Transp. Rev. 104 (2017) 69–82. [Google Scholar]
  • A. Jabbarzadeh, B. Fahimnia and S. Seuring, Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application. Transp. Res. Part E: Logistics Transp. Rev. 70 (2014) 225–244. [Google Scholar]
  • S. Khalilpourazari and A.A. Khamseh, Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application. Ann. Oper. Res. 283 (2019) 355–393. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Behroozi, S.M.H. Hosseini and S.S. Sana, Teaching–learning-based genetic algorithm (TLBGA) an improved solution method for continuous optimization problems. Int. J. Syst. Assur. Eng. Manage. 12 (2021) 1362–1384. [CrossRef] [Google Scholar]
  • A. Hassani, S.M.H. Hosseini and F. Behroozi, Minimizing the operational costs in a flexible flow shop scheduling problem with unrelated parallel machines. J. Optim. Ind. Eng. 14 (2021) 169–184. [Google Scholar]
  • H. Iba and C.C. Aranha, Introduction to genetic algorithms, in Practical Applications of Evolutionary Computation to Financial Engineering. Springer, Berlin, Heidelberg (2012) 1–17. [Google Scholar]
  • D.A. Van Veldhuizen and G.B. Lamont, Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8 (2000) 125–147. [CrossRef] [PubMed] [Google Scholar]
  • C.A.C. Coello and Nareli Cruz Cortés, Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evol. Mach. 6 (2005) 163–190. [CrossRef] [Google Scholar]
  • A. Britto and A. Pozo, Using reference points to update the archive of MOPSO algorithms in many-objective optimization. Neurocomputing 127 (2014) 78–87. [Google Scholar]
  • C.A.C. Coello, G.B. Lamont and D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems. Vol. 5. Springer, New York (2007). [Google Scholar]
  • V. Hajipour, P. Fattahi, M. Tavana and D. Di Caprio, Multi-objective multi-layer congested facility location–allocation problem optimization with Pareto-based meta-heuristics. Appl. Math. Modell. 40 (2016) 4948–4969. [CrossRef] [Google Scholar]
  • C.-L. Hsieh, An evolutionary-based optimization for a multi-objective blood banking supply chain model, in International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, Springer, Cham (2014) 511–520. [Google Scholar]
  • M. Asadpour, O. Boyer and R. Tavakkoli-Moghaddam, A blood supply chain network with backup facilities considering blood groups and expiration date: a real-world application. Int. J. Eng. 34 (2021) 470–479. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.