Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 87 - 97
DOI https://doi.org/10.1051/ro/2022215
Published online 12 January 2023
  • H. Kerivin and A.R. Mahjoub, Design of survivable networks: a survey. Networks 46 (2005) 1–21. [Google Scholar]
  • P. Cruz, T. Gomes and D. Medhi, A heuristic for widest edge-disjoint path pair lexicographic optimization, in6th International Workshop on Reliable Networks Design and Modeling (RNDM). IEEE (2014) 9–15. [Google Scholar]
  • A. Hou, C.Q. Wu, D. Fang, Y. Wang and M. Wang, Bandwidth scheduling for big data transfer using multiple fixed node-disjoint paths. J. Network Comput. App. 85 (2017) 47–55. [Google Scholar]
  • L. Liu, J.-T. Zhou, H.-F. Xing and X.-Y. Guo, Flow splitting scheme over link-disjoint multiple paths in software-defined networking. Concurrency Comput.: Pract. Experience 34 (2022) e6793. [Google Scholar]
  • M. MalekiTabar and, A.M. Rahmani, A delay-constrained node-disjoint multipath routing in software-defined vehicular networks. Peer-to-Peer Networking App. 15 (2022) 1452–1472. [Google Scholar]
  • S. Kettouche, M. Maimour and L. Derdouri, Disjoint multipath RPL for QoE/QoS provision in the internet of multimedia things. Computing 104 (2022) 1677–1699. [CrossRef] [Google Scholar]
  • M.K. Marina and S.R. Das, Ad hoc on-demand multipath distance vector routing. ACM SIGMOBILE Mobile Comput. Commun. Rev. 6 (2002) 92–93. [CrossRef] [Google Scholar]
  • Q. Peng, A. Walid, J. Hwang and S.H. Low, Multipath TCP: analysis, design, and implementation. IEEE/ACM Trans. Networking 24 (2016) 596–609. [CrossRef] [Google Scholar]
  • Y. Challal, A. Ouadjaout, N. Lasla, M. Bagaa and A. Hadjidj, Secure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks. J. Network Comput. App. 34 (2011) 1380–1397. [Google Scholar]
  • Y. Guo, F. Kuipers and P. Van Mieghem, Link-disjoint paths for reliable QoS routing. Int. J. Commun. Syst. 16 (2003) 779–798. [CrossRef] [Google Scholar]
  • J. Kurose and K. Ross, Computer Networking: A Top-down Approach, 7th edition. Pearson Education (2017). [Google Scholar]
  • J. Crichigno, W. Shu and M.-Y. Wu, Throughput optimization and traffic engineering in WDM networks considering multiple metrics, in 2010 IEEE International Conference on Communications (ICC). IEEE (2010) 1–6. [Google Scholar]
  • B.H. Shen, B. Hao and A. Sen, On multipath routing using widest pair of disjoint paths, 2004 Workshop on High Performance Switching and Routing. IEEE (2004) 134–140. [Google Scholar]
  • T. Wang, C.Q. Wu, Y. Wang, A. Hou and H. Cao, Multi-path routing for maximum bandwidth with k edge-disjoint paths, in 14th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE (2018) 1178–1183. [Google Scholar]
  • C. Barnhart, C.A. Hane and P.H. Vance, Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems. Oper. Res. 48 (2000) 318–326. [Google Scholar]
  • M. Caramia and A. Sgalambro, An exact approach for the maximum concurrent k-splittable flow problem. Optim. Lett. 2 (2008) 251–265. [Google Scholar]
  • M. Caramia and A. Sgalambro, A fast heuristic algorithm for the maximum concurrent k-splittable flow problem. Optim. Lett. 4 (2010) 37–55. [Google Scholar]
  • Y. Azar and O. Regev, Combinatorial algorithms for the unsplittable flow problem. Algorithmica 44 (2006) 49–66. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Weiner, A.T. Ernst, X. Li, Y. Sun and K. Deb, Solving the maximum edge disjoint path problem using a modified Lagrangian particle swarm optimisation hybrid. Eur. J. Oper. Res. 293 (2021) 847–862. [CrossRef] [Google Scholar]
  • G. Baier, E. Köhler and M. Skutella, The k-splittable flow problem. Algorithmica 42 (2005) 231–248. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Truffot and C. Duhamel, A branch and price algorithm for the k-splittable maximum flow problem. Discrete Optim. 5 (2008) 629–646. [CrossRef] [MathSciNet] [Google Scholar]
  • J.W. Suurballe and R.E. Tarjan, A quick method for finding shortest pairs of disjoint paths. Networks 14 (1984) 325–336. [Google Scholar]
  • S.G. Kolliopoulos, Edge-disjoint paths and unsplittable flow. Tech. Rep., National and Kapodistrian University of Athens (2007). [Google Scholar]
  • S.G. Kolliopoulos, Disjoint paths and unsplittable flow (version 2.7), Tech. Rep. National and Kapodistrian University of Athens (2016). [Google Scholar]
  • Y. Deng, L. Guo K. Liao and Y. Chen, On finding maximum disjoint paths with different colors: computational complexity and practical LP-based algorithms. Theor. Comput. Sci. 886 (2021) 157–168. [Google Scholar]
  • L.R. Ford and D.R. Fulkerson, Maximal flow through a network. Can. J. Math. 8 (1956) 399–404. [Google Scholar]
  • H.D. Sherali and J.C. Smith, Improving discrete model representations via symmetry considerations. Manage. Sci. 47 (2001) 1396–1407. [Google Scholar]
  • R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993). [Google Scholar]
  • T. Böhme, F. Göring and J. Harant, Menger’s theorem. J. Graph Theory 37 (2001) 35–36. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.