Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 1, January-February 2023
Page(s) 99 - 120
DOI https://doi.org/10.1051/ro/2022211
Published online 17 January 2023
  • E.E. Ammar, Study on multi-objective solid transportation problems. Eur. J. Sci. Res. 125 (2014) 7–19. [Google Scholar]
  • E.E. Ammar and E.A. Youness, Study on multi-objective transportation problem with fuzzy numbers. Appl. Math. Comput. 166 (2005) 241–253. [MathSciNet] [Google Scholar]
  • E.E. Ammar and H.A. Khalifa, On fuzzy multi-objective multi-item solid transportation problems. Int. J. Comput. Organ. Trends 17 (2015) 1–19. [CrossRef] [Google Scholar]
  • E.E. Ammar and H. Khalifa, A fuzzy solution approach for optimizing water resources management problem. Int. J. Ind. Eng. Prod. Res. 30 (2019) 1–10. [Google Scholar]
  • M.G. Alharbi, H.A.E.W. Khalifa and E.E. Ammar, An interactive approach for solving the multi-objective minimum cost flow problem in the fuzzy environment. J. Math. Res. 2020 (2020) 6247423. [Google Scholar]
  • P. Anukokila, B. Radhakrishnan and A. Anju, Goal programming approach for solving multi-objective fractional transportation problem with fuzzy parameters. RAIRO:RO 53 (2019) 157–178. [Google Scholar]
  • H. Dalman, Uncertain programming model for multi-item solid transportation problem. Int. J. Mach. Learn. Cybern. 9 (2018) 559–567. [CrossRef] [Google Scholar]
  • H. Dalman, N. Güzel and M. Sivri, A fuzzy set-based approach to multi-objective multi-item solid transportation problem under uncertainty. Int. J. Fuzzy Syst. 18 (2016) 716–729. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Ebrahimnejad, A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 19 (2014) 171–176. [CrossRef] [Google Scholar]
  • M. Gen, K. Ida, Y. Li and E. Kubota, Solving bicriteria solid transportation problem with fuzzy numbers by a genetic algorithm. Comput. Ind. Eng. 29 (1995) 537–541. [CrossRef] [Google Scholar]
  • S. Ghosh and S.K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO:RO 56 (2020) S2923–S2952. [Google Scholar]
  • S. Ghosh, S.K. Roy, A. Ebrahimnejad and J.L. Verdegay, Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex Intell. Syst. 7 (2021) 1009–1023. [CrossRef] [Google Scholar]
  • S. Ghosh, K.-H. Küfer, S.K. Roy and G.-W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment. Complex Intell. Syst. 8 (2022) 4115–4143. [CrossRef] [Google Scholar]
  • S. Ghosh, S.K. Roy and A. Fügenschuh, The multi-objective solid transportation problem with preservation technology using Pythagorean fuzzy sets. Int. J. Fuzzy Syst. 24 (2022) 2687–2704. [CrossRef] [Google Scholar]
  • S. Ghosh, K.-H. Küfer, S.K. Roy and G.-W. Weber, Type-2 zigzag uncertain multi-objective fixed-charge solid transportation problem: time window vs. preservation technology. Cent. Eur. J. Oper. Res. (2022) 1–26. [Google Scholar]
  • B. Giri and S.K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem. Int. J. Mach. Learn. Cybern. 13 (2022) 3089–3112. [CrossRef] [Google Scholar]
  • P. Grzegorzewski, Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130 (2002) 321–330. [CrossRef] [Google Scholar]
  • K.B. Haley, New methods in mathematical programming the solid transportation problem. Oper. Res. 10 (1962) 448–463. [Google Scholar]
  • A. Hamzehee, M.A. Yaghoobi and M. Mashinchi, Linear programming with rough interval coefficients. J. Intell. Fuzzy Syst. 26 (2014) 1179–1189. [Google Scholar]
  • F.L. Hitchcock, The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224–230. [Google Scholar]
  • F. Jiménez and J.L. Verdegay, Uncertain solid transportation problems. Fuzzy Sets Syst. 100 (1998) 45–57. [CrossRef] [Google Scholar]
  • F. Jiménez and J.L. Verdegay, Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach. Eur. J. Oper. Res. 117 (1999) 485–510. [CrossRef] [Google Scholar]
  • A. Kaur and A. Kumar, A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 12 (2012) 1201–1213. [CrossRef] [Google Scholar]
  • P. Kaur, V. Verma and K. Dahiya, Capacitated two-stage time minimization transportation problem with restricted flow. RAIRO:RO 51 (2017) 447–467. [Google Scholar]
  • P. Kundu, S. Kar and M. Maiti, Multi-objective multi-item solid transportation problem in fuzzy environment. Appl. Math. Model. 37 (2013) 2028–2038. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.Z. Li, Improved genetic algorithm for solving multi-objective solid transportation problem with fuzzy number. Japanese J. Fuzzy Theory Syst. 4 (1998) 220–229. [Google Scholar]
  • D.R. Mahapatra, S.K. Roy and M.P. Biswal, Multi-choice stochastic transportation problem involving extreme value distribution. Appl. Math. Model. 37 (2013) 2230–2240. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Maity, S.K. Roy and J.L. Verdegay, Multi-objective transportation problem with cost reliability under uncertain environment. Int. J. Comput. Intell. Syst. 9 (2016) 839–849. [CrossRef] [Google Scholar]
  • G. Maity, D. Mardanya, S.K. Roy and G.W. Weber, A new approach for solving dual-hesitant fuzzy transportation problem with restrictions. Sadhana 44 (2019) 75. [Google Scholar]
  • G. Maity, S.K. Roy and J.L. Verdegay, Analyzing multi-modal transportation problem and its application to artificial intelligence. Neural Comput. Appl. 32 (2020) 2243–2256. [Google Scholar]
  • D. Mardanya and S.K. Roy, Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Chin. Univ. 37 (2022) 111–130. [CrossRef] [Google Scholar]
  • D. Mardanya, G. Maity and S.K. Roy, The multi-objective multi-item just-in-time transportation problem. Optimization (2021) 1–32. [Google Scholar]
  • D. Mardanya, G. Maity and S.K. Roy, Solving bi-level multi-objective transportation problem under fuzziness. Int. J. Uncertain. Fuzziness Knowlege-Based Syst. 29 (2021) 411–433. [CrossRef] [Google Scholar]
  • D. Mardanya, G. Maity, S.K. Roy and V.F. Yu, Solving the multi-modal transportation problem via the rough interval approach. RAIRO:RO 56 (2022) 3155–3185. [Google Scholar]
  • S. Midya, S.K. Roy and F.Y. Vincent, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cybern. 12 (2020) 699–717. [Google Scholar]
  • S. Midya, S.K. Roy and G.W. Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO:RO 55 (2021) 1715–1741. [Google Scholar]
  • R.E. Moore, Methods and applications of interval analysis. Soc. Ind. Appl. Math. (1979) 2. [Google Scholar]
  • R. Moore and W. Lodwick, Interval analysis and fuzzy set theory. Fuzzy Sets Syst. 135 (2003) 5–9. [CrossRef] [Google Scholar]
  • A. Nagarjan and K. Jeyaraman, Solution of chance constrained programming problem for multi-objective interval solid transportation problem under stochastic environment using fuzzy approach. Int. J. Comput. Appl. 10 (2010) 19–29. [Google Scholar]
  • Z. Pawlak, Rough sets. Int. J. Comput. Inf. Sci. 11 (1982) 341–356. [Google Scholar]
  • M. Rebolledo, Rough intervals-enhancing intervals for qualitative modeling of technical systems. Artif. Intell. 170 (2006) 667–685. [CrossRef] [Google Scholar]
  • S.K. Roy and S. Midya, Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl. Intell. 49 (2019) 3524–3538. [Google Scholar]
  • S.K. Roy, G. Maity, G.W. Weber and S.Z. Alparslan Gök, Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal. Ann. Oper. Res. 253 (2017) 599–620. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Roy, G. Maity and G.W. Weber, Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 25 (2017) 417–439. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Roy, A. Ebrahimnejad, J.L. Verdegay and S. Das, New approach for solving intuitionistic fuzzy multi-objective transportation problem. Sadhana 43 (2018). [Google Scholar]
  • S.K. Roy, S. Midya and V.F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 26 (2018) 971–996. [CrossRef] [Google Scholar]
  • E. Schell, Distributuin of s product by several properties, in Proceedings of 2nd Symposium in Linear Programming. DCS/comptroller, HQ US Air Force, Washington DC (1955) 615–642. [Google Scholar]
  • A. Tanksale and J.K. Jha, A hybrid fix-and-optimize heuristic for integrated inventory-transportation problem in a multi-region multi-facility supply chain. RAIRO:RO 54 (2020) 749–782. [Google Scholar]
  • S. Xiao and E.M.K. Lai, A rough programming approach to power-balanced instruction scheduling for VLIW digital signal processors. IEEE Trans. Signal Process. 56 (2008) 1698–1709. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Yang and Y. Feng, A bicriteria solid transportation problem with fixed-charge under stochastic environment. Appl. Math. Model. 31 (2007) 2668–2683. [CrossRef] [Google Scholar]
  • L. Yang and L. Liu, Fuzzy fixed-charge solid transportation problem and algorithm. Appl. Soft Comput. 7 (2007) 879–889. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.