Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 631 - 648
DOI https://doi.org/10.1051/ro/2023015
Published online 10 April 2023
  • A. Atamtürk, On the facets of the mixed-integer knapsack polyhedron. Math. Prog. 98 (2003) 145–175. [CrossRef] [Google Scholar]
  • E. Balas, Facets of the knapsack polytope. Math. Prog. 8 (1975) 146–164. [CrossRef] [Google Scholar]
  • C. Berge, Graphes et Hypergraphes, Dunod, Paris (1970). [Google Scholar]
  • C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company (1973). [Google Scholar]
  • I.R. De Farias Jr., I.E. Johnson and G. Nemhauser, Facets of the complimentarity knapsack polytope. Math. Oper. Res. 27 (2002) 210–227. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Easton and K. Hooker, Simultaneously lifting sets of binary variables into cover inequalities for knapsack polytopes. Discret. Optimiz. 5 (2008) 254–261. [CrossRef] [Google Scholar]
  • J. Edmonds, Matroids and the greedy algorithm. Math. Prog. 1 (1971) 127–136. [CrossRef] [Google Scholar]
  • R. Euler, M. Junger and G. Reinelt, Generalizations of cliques, odd cycles and anticycles and their relation to independence system polyhedra. Math. Oper. Res. 12 (1987) 451–462. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Fouilhoux, M. Labbé and A.R. Mahjoub, Generating facets for the independence system polytope. SIAM J. Discret. Math. 23 (2009) 1484–1506. [CrossRef] [Google Scholar]
  • R.E. Gomory, Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2 (1969) 451–588. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Grötschel, L. Lovasz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer (1988). [CrossRef] [Google Scholar]
  • Z. Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted cover inequalities for 0–1 integer programs: computation. INFORMS J. Comput. 10 (1998) 427–437. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted cover inequalities for 0–1 integer programs: complexity. INFORMS J. Comput. 11 (1999) 117–123. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Sequence independent lifting in mixed integer programming. J. Comb. Optimiz. 4 (2000) 109–129. [CrossRef] [Google Scholar]
  • T. Gutierrez, Lifting general integer variables. Master of science thesis, Department of Industrial and Manufacturing Systems Engineering, Kansas State University (2007). [Google Scholar]
  • P.L. Hammer, E.L. Johnson and U.N. Peled, Facets of regular 0–1 polytopes. Math. Prog. 8 (1975) 179–206. [CrossRef] [Google Scholar]
  • B. Hunsaker and C. Tovey, Simple lifted cover inequalities and hard knapsack problems. Discret. Opt. 2 (2005) 219–228. [CrossRef] [Google Scholar]
  • E. Korach and M. Razgon, Optimal hypergraph tree realization, in Graph-Theoretic Concepts in Computer Science, vol. 31, Springer, International Workshop (2005). [Google Scholar]
  • L.A. Kubik, Simultaneously lifting multiple sets in binary knapsack integer programs. Master of science thesis, Department of Industrial and Manufacturing Systems Engineering, Kansas State University (2009). [Google Scholar]
  • M. Laurent, A generalization of antiwebs to independence systems and their canonical facets. Math. Prog. 45 (1989) 97–108. [CrossRef] [Google Scholar]
  • G.L. Nemhauser and P.H. Vance, Lifted cover facets of the 0-1 knapsack polytope with gub constraints. Oper. Res. Lett. 16 (1994) 255–263. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Pahwa, The theory of simultaneously lifting: constellations in conflict hypergraphs. Master of science thesis, Department of Industrial and Manufacturing Systems Engineering, Kansas State University (2009). [Google Scholar]
  • K. Park, Lifting cover inequalities for the precedence-constrained knapsack problem. Discret. Appl. Math. 72 (1997) 219–241. [CrossRef] [Google Scholar]
  • K. Sharma, Simultaneously lifting sets of variables in binary knapsack problems. Master of science thesis, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, 2007. [Google Scholar]
  • S. Shebalov and D. Klabjan, Sequence independent lifting for mixed integer programs with variable upper bounds. Math. Prog. 105 (2006) 523–561. [CrossRef] [Google Scholar]
  • D. Welsh, Matroid Theory, Academic Press (1976). [Google Scholar]
  • L.A. Wolsey, Faces for a linear inequality in 01 variables. Math. Prog. 8 (1975) 165–178. [CrossRef] [Google Scholar]
  • L.A. Wolsey, Facets and strong valid inequalities for integer programs. Oper. Res. 24 (1976) 367–372. [CrossRef] [Google Scholar]
  • L.A. Wolsey, Valid inequalities and superadditivity for 0–1 integer programs. Math. Oper. Res. 1 (1977) 66–77. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Zemel, Lifting the facets of 0–1 polytopes. Math. Prog. 15 (1978) 268–277. [CrossRef] [Google Scholar]
  • E. Zemel, Easily computable facets of the knapsack polytope. Math. Oper. Res. 14 (1989) 760–766. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Zenga and J.P.P. Richard, A polyhedral study on 01 knapsack problems with disjoint cardinality constraints: strong valid inequalities by sequence-independent lifting. Discret. Optim. 8 (2011) 259–276. [CrossRef] [Google Scholar]
  • B. Zenga and J.P.P. Richard, A polyhedral study on 01 knapsack problems with disjoint cardinality constraints: facet-defining inequalities by sequential lifting. Discret. Optim. 8 (2011) 277–301. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.