Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 571 - 608
Published online 05 April 2023
  • J. Skinner, E. Chatzopoulou and M. Gorton, Perceptions of localness and authenticity regarding restaurant choice in tourism settings. J. Travel Tour. Mark. 37 (2020) 155–168. [CrossRef] [Google Scholar]
  • J. Ha and S.C. Jang, Attributes, consequences, and consumer values: a means-end chain approach across restaurant segments. Int. J. Contemp. Hosp. Manag. 25 (2013) 383–409. [CrossRef] [Google Scholar]
  • M. Pedraja and J. Yague, What information do customers use when choosing a restaurant? Int. J. Contemp. Hosp. Manag. 13 (2001) 316–318. [CrossRef] [Google Scholar]
  • N. Ghorui, A. Ghosh, E.A. Algehyne, S.P. Mondal and A.P. Saha, AHP-TOPSIS inspired shopping mall site selection problem with fuzzy data. Mathematics 8 (2020) (1380). [CrossRef] [Google Scholar]
  • S.A. Khan, A. Chaabane and F.T. Dweiri, Multi-Criteria Decision-Making Methods Application in Supply Chain Management: A Systematic Literature Review, Multi-Criteria Methods and Techniques Applied to Supply Chain Management (2018) 1–31. DOI: [Google Scholar]
  • A. Sarkar, A. Ghosh, B. Karmakar, A. Shaikh and S.P. Mondal, Application of Fuzzy TOPSIS Algorithm for Selecting Best Family Car. 2020 International Conference on Decision Aid Sciences and Application (DASA) (2020) 59–63. DOI: [CrossRef] [Google Scholar]
  • M. Behzadian, R.B. Kazemzadeh, A. Albadvi and M. Aghdasi, PROMETHEE: a comprehensive literature review on methodologies and application. Eur. J. Oper. Res. 200 (2009) 198–215. [Google Scholar]
  • O.S. Vaiday and S. Kumar, Analytic hierarchy process: an overview of application. Eur. J. Oper. Res. 169 (2004) 1–29. [Google Scholar]
  • W. Ho, Integrated analytic hierarchy process and its applications – a literature review. Eur. J. Oper. Res. 186 (2007) 211–228. [Google Scholar]
  • P. Biswas, S. Pramanik and B.C. Giri, TOPSIS strategy for multi-attribute decision making with trapezoidal neutrosophic numbers. Neutrosophic Sets Syst. 19 (2018) 29–39. [Google Scholar]
  • A. Ghosh, N. Ghorui, S.P. Mondal, S. Kumari, B.K. Mondal, A. Das and M.S. Gupta, Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics 9 (2021) 393. [CrossRef] [Google Scholar]
  • P. Biswas, S. Pramanik and B.C. Giri, TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 27 (2016) 727–737. [CrossRef] [Google Scholar]
  • I.M. Hezam, M.K. Nayeem, A. Foul and A.F. Alrasheedi, COVID-19 vaccine: a neutrosophic MCDM approach for determining the priority groups. Res. Phys. 20 (2021) 103654 [Google Scholar]
  • N. Tanoumand, D.Y. Ozdemir, K. Kilic and F. Ahmed, Selecting cloud computing service provider with fuzzy AHP, in 2017 IEEE International Conference on Fuzzy Systems, IEEE (2017) 1–5. [Google Scholar]
  • S. Ali, N. Ullah, M.F. Abrar, Z. Yang and J. Huang, Fuzzy multicriteria decision-making approach for measuring the possibility of cloud adoption for software testing. Sci. Prog. 6597316 (2020) 1–24. [Google Scholar]
  • M. Stankovi, Z. Stevi, D.K. Das, M. Suboti and D. Pamucar, A new fuzzy MARCOS method for road traffic risk analysis. Mathematics 8 (2020) 457. [CrossRef] [Google Scholar]
  • G.H. Tzeng, M.H. Teng, J.J. Chen and S. Opricovic, Multicriteria selection for a restaurant location in Taipei. Int. J. Hosp. Manag. 21 (2002) 171–187. [CrossRef] [Google Scholar]
  • M. Timor and S. Sipahi, Fast-food restaurant site selection factor evaluation by the analytic hierarchy process. Bus. Rev. 4 (2005) 161–167. [Google Scholar]
  • A. Karasan, E.K. Zavadskas, C. Kahraman and M. Keshavarz-Ghorabaee, Residential construction site selection through interval-valued hesitant fuzzy CODAS method. Informatica 30 (2019) 689–710. [CrossRef] [Google Scholar]
  • M.A.E. Moatya, M.A. Shoumanb and E.S. Hasanc, Decision making assesment for site selection using the AHP and TOPSIS methods. in The 44th Conference for Statistics, Computer Science, and Operation Research (2009). DOI: 10.13140/2.1.2550.8160. [Google Scholar]
  • D. Sriniketha, V.D. Reddy and A.N. Phaneendra, Plant location selection by using MCDM methods. Int. J. Eng. Res. Appl. 4 (2014) 110–116. [Google Scholar]
  • D. Chatterjee and B. Mukherjee, Potential hospital location selection using AHP: a study in rural India. Int. J. Comput. Appl. 71 (2013) 1–7. [Google Scholar]
  • L. Sun, Site selection for EVCSs by GIS-based AHP method. E3S Web of Conferences. Vol. 194, ICAEER (2020) 05051. [CrossRef] [EDP Sciences] [Google Scholar]
  • P. Ramu, T. Srinivasarao, L. Nandan and M. Keshav, Fuzzy AHP, RS & GIS based hyberid approach for airport site selection-Kothaguddem district. Int. J. Adv. Sci. Technol. 29 (2020) 1645–1653. [Google Scholar]
  • Y.Y. Wibisono and S. Marella, A decision making model for selection of cafe location: an ANP approach. J. Phys. Conf. Ser. 1477 (2020) 052030. [CrossRef] [Google Scholar]
  • J. Chen, J. Wang, T. Balezentis, F. Zagurskaite, D. Streimikiene and D. Makuteniene, Multicriteria approach towards the sustainable selection of a teahouse location with sensitivity analysis. Sustainability 10 (2018) 2926. [CrossRef] [Google Scholar]
  • B.L. Chua, S. Karim, S. Lee and H. Han, Customer restaurant choice: an empirical analysis of restaurant types and eating-out occasions. Int. J. Environ. Res. Public Health 17 (2020) 6276. [CrossRef] [Google Scholar]
  • Y. Zhong and H.C. Moon, What drives customer satisfaction, loyalty, and happiness in fast-food restaurants in China? Perceived price, service quality, food quality, physical environment quality, and the moderating role of gender. Foods 9 (2020) 460. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]
  • L.A. Zadeh, Fuzzy Sets, fuzzy logic and fuzzy systems, selected papers by Lotfi A. Zadeh, in Advances in Fuzzy Systems – Applications and Theory. Vol. 6, World Scientific: Hackensack, NJ, USA (1996) 394–432. [CrossRef] [Google Scholar]
  • M. Rahaman, S.P. Mondal, S. Alam, A. Sayed, M. Metwally, S. Salahshour, M. Salimi and A. Ahmadian, Manifestation of interval uncertainties for fractional differential equations under conformable derivative. Chaos Solit. Fractals 165 (2022) 9–10. [Google Scholar]
  • A. Biswas, S.K. Roy and S.K. Mondal, Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario. Appl. Soft Comput. 129 (2022) 109576. [CrossRef] [Google Scholar]
  • M. Akram, I. Ullah, T. Allahviranloo and S.A. Edalatpanah, Fully Pythagorean fuzzy linear programming problems with equality constraints. Comput. Appl. Math. 40 (2021) 120. [CrossRef] [Google Scholar]
  • M. Akram, I. Ullah and M.G. Alharbi, Methods for solving LR-type pythagorean fuzzy linear programming problems with mixed constraints. Math. Prob. Eng. 4306058 (2021) 1–29. [Google Scholar]
  • M. Akram, I. Ullah and T. Allahviranloo, A new method for the solution of fully fuzzy linear programming models. Comput. Appl. Math. 41 (2022). DOI: 10.1007/s40314-021-01756-4. [Google Scholar]
  • S.P. Mondal and T.K. Roy, Non-linear arithmetic operation on generalized triangular intuitionistic fuzzy numbers. Notes Intuitionistic Fuzzy Sets 20 (2014) 9–19. [Google Scholar]
  • H. Qiu, Y. Hou and H. Pan, Linear programming with fuzzy constraints based on nonlinear membership function, in 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), IEEE Xplore (2011) 12244123. [Google Scholar]
  • M. Velasquez and P.T. Hester, An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10 (2013) 56–66. [Google Scholar]
  • J.G. Dijkman, H.V. Haeringen and S.J. De Lange, Fuzzy numbers. J. Math. Anal. Appl. 92 (1983) 301–341. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Jezewski, R. Czabanski and J. Leski, Introduction to Fuzzy Sets, Theory and Applications of Ordered Fuzzy Numbers, Vol. 356 (2017) 3–22. DOI: [CrossRef] [Google Scholar]
  • J. Drewniak, Convex and strongly convex fuzzy sets. J. Math. Anal. Appl. 126 (1987) 292–300. [CrossRef] [MathSciNet] [Google Scholar]
  • I.K. Kim, W. Lee, J.H. Yoon and S.H. Choi, Fuzzy regression model using trapezoidal fuzzy numbers for re-auction data. Int. J. Fuzzy Log. Intell. Syst. 16 (2016) 72–80. [CrossRef] [Google Scholar]
  • A.J. Kamble, Some notes on pentagonal fuzzy numbers. Int. J. Fuzzy Math. Arch. 13 (2017) 113–121. [CrossRef] [Google Scholar]
  • V.L.G. Nayagam, J. Murugan and K. Suriyapriya, Hexagonal fuzzy number inadvertences and its applications to MCDM and HFFLS based on complete ranking by score functions. Comput. Appl. Math. 39 (2020) 1–47. [Google Scholar]
  • R. Chutia, S. Mahanta and H.K. Baruah, An alternative method of finding the membership of a fuzzy number. Int. J. Latest Trends Comput. 1 (2010) 69–72. [Google Scholar]
  • D. Dubois and H. Prade, Fundamentals of Fuzzy Sets, Kluwer Academic Publishers, Boston (2000). [CrossRef] [Google Scholar]
  • P. Dutta, H. Boruah and T. Ali, Fuzzy arithmetic with and without using α-cut method: a comparative study. Int. J. Latest Trends Comput. 2 (2011) 99–107. [Google Scholar]
  • C.N. Wang, Y.F. Huang, Y.C. Chai and V.T. Nguyen, A multi-criteria decision making (MCDM) for renewable energy plant location selection in Vietnam under a fuzzy environment. Appl. Sci. Math. 8 (2018) 2069. [Google Scholar]
  • T.L. Satty, The Analytic Hierarchy Process, McGraw-Hill, New York, NY, USA (1980). [Google Scholar]
  • Y. Wind and T.L. Saaty, Marketing applications of the analytic hierarchy process. Manag. Sci. 26 (1980) 641–658. [CrossRef] [Google Scholar]
  • C.L. Hwang and K. Yoon, Methods for multiple attribute decision making, in Multiple Attribute Decision Making, Springer (1981) 58–191. [CrossRef] [Google Scholar]
  • R. Rahim, S. Supiyandi, A.P.U. Siahaan, T. Listyorini, A.P. Utomo, W.A. Triyanto, Y. Irawan, S. Aisyah, M. Khairani, S. Sundari and K. Khairunnisa, TOPSIS method application for decision support system in internal control for selecting best employees, in 2nd International Conference on Statistics, Mathematics, Teaching, and Research (2018). DOI: 10.1088/1742-6596/1028/1/012052. [Google Scholar]
  • E.K. Zavadskas, A. Kaklauskas and V. Sarka, The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1 (1994) 131–139. [Google Scholar]
  • Y. Ayrim, K.D. Atalay and G.F. Can, A new stochastic MCDM approach based on COPRAS. Int. J. Inf. Technol. Decis. Mak. 17 (2018) 857–882. [CrossRef] [Google Scholar]
  • M.M. Fouladgar, A.Y. Chamzini, A. Lashgari, E.K. Zavadskas and Z. Turskis, Maintenance strategy selection using AHP and COPRAS under fuzzy environment. Int. J. Strateg. Prop. Manag. 16 (2012) 85–104. [CrossRef] [Google Scholar]
  • S. Narayanamoothy, L. Ramya, S. Kalaiselvan, J.V. Kureethara and D. Kang, Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions. Socio-Econ. Plan. Sci. 76 (2021) 100996. [CrossRef] [Google Scholar]
  • A.C. Tolga and G. Durak, Evaluating innovation projects in air cargo sector with fuzzy COPRAS, in Intelligent Conference on Intelligent and Fuzzy (2019). DOI: 10.1007/978-3-030-23756-1_84. [Google Scholar]
  • D. Ghose, S. Pradhan, P. Tamuli and S. Uddin, Optimal material for solar electric vehicle application using an integrated fuzzy-COPRAS model. Energy Sources A: Recovery Util. Environ. Eff. (2019). DOI: 10.1080/15567036.2019.1668879. [Google Scholar]
  • L.L. Berry, V.A. Zeitbaml and A. Parasuraman, Five imperatives for improving service quality. Sloan Manag. Rev. 31 (1990) 29–38. [Google Scholar]
  • S. Chakraborty and A.P. Saha, Selection of optimal lithium ion battery recycling process: a multi-criteria group decision making approach. J. Energy Storage 55 (2022) 105557. [CrossRef] [Google Scholar]
  • S. Chakraborty and A.P. Saha, A framework of LR fuzzy AHP and fuzzy WASPAS for health care waste recycling technology. Appl. Soft Comput. 127 (2022) 109388. [CrossRef] [Google Scholar]
  • A.M. Ghaleb, H. Kaid, A. Alsamhan, S.H. Mian and L. Hidri, assessment and comparison of various MCDM approaches in the selection of manufacturing process. Adv. Mater. Sci. Eng. (2020) 1–16. DOI: 10.1155/2020/4039253. [CrossRef] [Google Scholar]
  • F.A. Alzahrani, Fuzzy based decision-making approach for estimating usable-security of healthcare web application. Comput. Mater. Contin. 66 (2021) 2599–2625. [Google Scholar]
  • M.T.J. Ansari, F.A. Alzahrani, D. Pandey and A. Agrawal, A fuzzy TOPSIS based analysis toward selection of effective security requirements engineering approach for trustworthy healthcare software development. BMC Med. Inform. Decis. Mak. 20 (2020) 236. [CrossRef] [Google Scholar]
  • K. Sahu, F.A. Alzahrani, R.K. Srivastava and R. Kumar, Hesitant fuzzy sets based symmetrical model of decision-making for estimating the durability of web application. Symmetry 12 (2020) 1770. [CrossRef] [Google Scholar]
  • F.A. Alzahrani, Evaluating the usable-security of healthcare software through unified technique of fuzzy logic, ANP and TOPSIS. IEEE Access 8 (2020) 109905–109916. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.