Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
|
|
---|---|---|
Page(s) | 817 - 835 | |
DOI | https://doi.org/10.1051/ro/2023037 | |
Published online | 28 April 2023 |
- A.B. Abubakar, P. Kumam, M. Malik, P. Chaipunya and A.H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization in portfolio selection. AIMS Math. 6 (2021) 6506–6527. [CrossRef] [MathSciNet] [Google Scholar]
- A.B. Abubakar, P. Kumam, M. Malik and A.H. Ibrahim, A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems. Math. Comput. Simul. 201 (2022) 640–657. [CrossRef] [Google Scholar]
- A.B. Abubakar, M. Malik, P. Kumam, H. Mohammad, M. Sun, A.H. Ibrahim and A.I. Kiri, A liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control. J. King Saud Univ. Sci. 34 (2022) 101923. [CrossRef] [Google Scholar]
- N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008) 147–161. [MathSciNet] [Google Scholar]
- A.M. Awwal, I.M. Sulaiman, M. Malik, M. Mamat, P. Kumam and K. Sitthithakerngkiet, A spectral RMIL+ conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access 9 (2021) 75398–75414. [CrossRef] [Google Scholar]
- M.C. Bartholomew-Biggs, Nonlinear Optimization with Financial Applications. Springer Science & Business Media (2006). [Google Scholar]
- M.C. Bartholomew-Biggs and S.J. Kane, A global optimization problem in portfolio selection. Comput. Manag. Sci. 6 (2009) 329–345. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Dai, Comments on a new class of nonlinear conjugate gradient coefficient with global convergence properties. Appl. Math. Comput. 276 (2016) 297–300. [CrossRef] [MathSciNet] [Google Scholar]
- Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. [Google Scholar]
- Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [CrossRef] [MathSciNet] [Google Scholar]
- J. Deepho, A.B. Abubakur, M. Malik and I.K. Argyros, Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications. J. Comput. Appl. Math. 405 (2022) 113823. [CrossRef] [Google Scholar]
- S. Delladji, M. Belloufi and B. Sellami, New hybrid conjugate gradient method as a convex combination of FR and BA methods. J. Inf. Optim. Sci. 42 (2021) 591–602. [Google Scholar]
- S.S. Djordjević, New hybrid conjugate gradient method as a convex combination of LS and FR methods. Acta Math. Sci. 39 (2019) 214–228. [CrossRef] [MathSciNet] [Google Scholar]
- E.D. Dolan and J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [CrossRef] [MathSciNet] [Google Scholar]
- A.H. Ibrahim, P. Kumam, A. Kamandi and A.B. Abubakar, An efficient hybrid conjugate gradient method for unconstrained optimization. Optim. Methods Softw. 37 (2022) 1370–1383. [CrossRef] [MathSciNet] [Google Scholar]
- P. Faramarzi and K.A. Amini, Modified spectral conjugate gradient method with global convergence. J. Optim. Theory Appl. 182 (2019) 667–690. [CrossRef] [MathSciNet] [Google Scholar]
- R. Fetcher, Practical Methods of Optimization Vol. 1: Unconstrained Optimization. John Wiley & Sons, New York (1987). [Google Scholar]
- R. Fletcher and C.M. Reeves, Function minimization by conjugate gradient. Comput. J. 7 (1964) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hestenes and E. Steifel, Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stan. Sect. B 49 (1952) 409–436. [CrossRef] [Google Scholar]
- B. Ivanov, P.S. Stanimirović, B.I. Shaini, H. Ahmad and M. Wang, A novel value for the parameter in the Dai–Liao-type conjugate gradient method. J. Func. Space 2021 (2021) 6693401. [Google Scholar]
- J. Jian, L. Yang, X. Jiang, P. Liu and M. Liu, A spectral conjugate gradient method with descent property. Mathematics 8 (2020) 280. [CrossRef] [Google Scholar]
- J. Jian, P. Liu, X. Jiang and B. He, Two improved nonlinear conjugate gradient methods with the strong Wolfe line search. Bull. Iran. Math. Soc. 48 (2022) 2297–2319. [CrossRef] [Google Scholar]
- X. Jiang, J. Jian, D. Song and P. Liu, An improved Polak–Ribière–Polyak conjugate gradient method with an efficient restart direction. Comput. Appl. Math. 40 (2021) 174. [CrossRef] [Google Scholar]
- M. Koorapetse, P. Kaelo, S. Lekoko and T. Diphofu, A derivative-free RMIL conjugate gradient projection method for convex constrained monotone equations with applications in compressive sensing. Appl. Numer. Math. 165 (2021) 431–441. [CrossRef] [MathSciNet] [Google Scholar]
- C.X. Kou and Y.H. Dai, A modified self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno method for unconstrained optimization. J. Optim. Theory Appl. 165 (2015) 209–224. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: theory. J. Optim. Theory Appl. 69 (1991) 129–137. [CrossRef] [MathSciNet] [Google Scholar]
- J.K. Liu, Y.X. Zhao and X.L. Wu, Some three-term conjugate gradient methods with the new direction structure. Appl. Numer. Math. 150 (2019) 433–443. [Google Scholar]
- J. Lu, G. Yuan and Z. Wang, A modified Dai-Liao conjugate gradient method for solving unconstrained optimization and image restoration problems. J. Appl. Math. Comput. 68 (2022) 681–703. [CrossRef] [MathSciNet] [Google Scholar]
- H. Markowitz, Portfolio selection. J. Finan. 7 (1952) 77–91. [Google Scholar]
- J.J. Morè, B.S. Garbow and K.E. Hillstrom, Testing unconstrained optimization software. ACM Trans. Math. Softw. (TOMS) 7 (1981) 17–41. [CrossRef] [Google Scholar]
- P. Mtagulwa and P. Kaelo, An efficient mixed conjugate gradient method for solving unconstrained optimisation problems. East Asian J. Appl. Math. 11 (2021) 421–434. [CrossRef] [MathSciNet] [Google Scholar]
- E. Polak and G. Ribiére, Note sur la covergence de directions conjugées. Rev. Fren. Inf. Rech. Oper. 16 (3e Année 1969,) 35–43. [Google Scholar]
- T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
- M. Rivaie, M. Mustafa, L.W. June and I. Mohd, A new class of nonlinear conjugate gradient coefficient with global convergence properties. Appl. Math. Comput. 218 (2012) 11323–11332. [CrossRef] [MathSciNet] [Google Scholar]
- S. Roman, Introduction to the Mathematics of Finance: from Risk Management to Options Pricing. Springer Science & Business Media (2004). [CrossRef] [Google Scholar]
- Q. Tian, X. Wang, L. Pang, M. Zhang and F. Meng, A new hybrid three-term conjugate gradient algorithm for large-scale unconstrained problems. Mathematics 9 (2021) 1353. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Wu, A modified three-term PRP conjugate gradient algorithm for optimization models. J. Inequl. Appl. 2017 (2017) 97. [CrossRef] [Google Scholar]
- S. Yao, Q. Feng, L. Li and J. Xu, A class of globally convergent three-term Dai-Liao conjugate gradient methods. Appl. Numer. Math. 151 (2020) 354–366. [CrossRef] [MathSciNet] [Google Scholar]
- J. Yin, L. Wang and X. Jiang, A modified PRP conjugate gradient method with Armijo line search for large-scale unconstrained optimization. in 36th ChiCC. Vol. 36. IEEE Xplore (2017) 2568–2571. [Google Scholar]
- J. Yin, J. Jian, X. Jiang, M. Liu and L. Wang, A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer. Algorithm 4 (2021) 1–30. [Google Scholar]
- T. Yuan, D. Bi, L. Pan, Y. Xie and J. Lyu, A compressive hybrid conjugate gradient image recovery approach for radial MRI. Imaging Sci. J. 66 (2018) 278–288. [CrossRef] [Google Scholar]
- G. Yuan, T. Li and W. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems. Appl. Numer. Math. 147 (2020) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zheng, A new family of Dai-Liao conjugate gradient methods for unconstrained optimization. RAIRO: Oper. Res. 55 (2021) 3281–3291. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear Programming, edited by J. Abadie. North-Holland, Amsterdam (1970) 37–86. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.