Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 787 - 815
Published online 28 April 2023
  • J. Wang, H. Zhou and X. Jin, Risk transmission in complex supply chain network with multi-drivers. Chaos Solitons Fractals 143 (2021) 1–10. [Google Scholar]
  • J. Li and P. Liu, Modeling green supply chain games with governmental interventions and risk preferences under fuzzy uncertainties. Math. Comput. Simul. 192 (2022) 1–23. [Google Scholar]
  • H. Wang, T. Gu, M. Jin, R. Zhao and G. Wang, The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos Solitons Fractals 116 (2018) 72–78. [CrossRef] [MathSciNet] [Google Scholar]
  • H.B. Hwarng and N. Xie, Understanding supply chain dynamics: a chaos perspective. Eur. J. Oper. Res. 184 (2008) 1163–1178. [Google Scholar]
  • M. Goodarzi, P. Makvandi, R.F. Saen and M.D. Sagheb, What are causes of cash flow bullwhip effect in centralized and decentralized supply chains? Appl. Math. Model. 44 (2017) 640–654. [Google Scholar]
  • S.M. Disney and D.R. Towill, The effect of vendor managed inventory (VMI) dynamics on the Bullwhip Effect in supply chains. Int. J. Prod. Econ. 85 (2003) 199–215. [Google Scholar]
  • D. Ivanov, A. Tsipoulanidis and J. Schönberger, Erratum to: Global Supply Chain and Operations Management. Springer International Publishing (2017). [CrossRef] [Google Scholar]
  • D. Ivanov, S. Sethi, A. Dolgui and B. Sokolov, A survey on control theory applications to operational systems, supply chain management, and Industry 4.0. Ann. Rev. Control 46 (2018) 134–147. [CrossRef] [Google Scholar]
  • M. Shekarian and M. Mellat Parast, An integrative approach to supply chain disruption risk and resilience management: a literature review. Int. J. Logistics Res. App. 24 (2021) 427–455. [Google Scholar]
  • S. Mithun Ali, S. Kumar Paul, P. Chowdhury, R. Agarwal, A.M. Fathollahi-Fard, C. Jose Chiappetta Jabbour and S. Luthra, Modelling of supply chain disruption analytics using an integrated approach: an emerging economy example. Expert Syst. Appl. 173 (2021) 114690. [Google Scholar]
  • A. Dolgui and D. Ivanov, Ripple effect and supply chain disruption management: new trends and research directions. Int. J. Prod. Res. 59 (2021) 102–109. [Google Scholar]
  • M.M. Naim, V.L. Spiegler, J. Wikner and D.R. Towill, Identifying the causes of the bullwhip effect by exploiting control block diagram manipulation with analogical reasoning. Eur. J. Oper. Res. 263 (2017) 240–246. [Google Scholar]
  • J. Dejonckheere, S.M. Disney, M.R. Lambrecht and D.R. Towill, Measuring and avoiding the bullwhip effect: a control theoretic approach. Eur. J. Oper. Res. 147 (2003) 567–590. [Google Scholar]
  • T.N. Cuong, H.S. Kim, S.S. You and D.A. Nguyen, Seaport throughput forecasting and post COVID-19 recovery policy by using effective decision-making strategy: a case study of Vietnam ports. Comput. Ind. Eng. 168 (2022) 108102. [Google Scholar]
  • J. Olivares-Aguila and W. ElMaraghy, System dynamics modelling for supply chain disruptions. Int. J. Prod. Res. 59 (2021) 1757–1775. [Google Scholar]
  • S. Modgil, S. Gupta, R. Stekelorum and I. Laguir, AI technologies and their impact on supply chain resilience during COVID-19. Int. J. Phys. Distrib. Logistics Manage. 52 (2022) 130–149. [Google Scholar]
  • A. Dolgui, D. Ivanov and B. Sokolov, Ripple effect in the supply chain: an analysis and recent literature. Int. J. Prod. Res. 56 (2018) 414–430. [Google Scholar]
  • V.L.M. Spiegler, M.M. Naim, D.R. Towill and J. Wikner, A technique to develop simplified and linearised models of complex dynamic supply chain systems. Eur. J. Oper. Res. 251 (2016) 888–903. [Google Scholar]
  • S.M. Disney, D.R. Towill and R.D.H. Warburton, On the equivalence of control theoretic, differential, and difference equation approaches to modeling supply chains. Int. J. Prod. Econ. 101 (2006) 194–208. [Google Scholar]
  • K. Hoberg, J.R. Bradley and U.W. Thonemann, Analyzing the effect of the inventory policy on order and inventory variability with linear control theory. Eur. J. Oper. Res. 176 (2007) 1620–1642. [Google Scholar]
  • X. Wang, S.M. Disney and J. Wang, Stability analysis of constrained inventory systems with transportation delay. Eur. J. Oper. Res. 223 (2012) 86–95. [Google Scholar]
  • W. Klibi, A. Martel and A. Guitouni, The design of robust value-creating supply chain networks: a critical review. Eur. J. Oper. Res. 203 (2010) 283–293. [Google Scholar]
  • R.D.H. Warburton, S.M. Disney, D.R. Towill and J.P.E. Hodgson, Further insights into “the stability of supply chains”. Int. J. Prod. Res. 42 (2004) 639–648. [Google Scholar]
  • Z.L. Chen, Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58 (2010) 130–148. [Google Scholar]
  • K. Kogan and E. Khmelnitsky, An optimal control model for continuous time production and setup scheduling. Int. J. Prod. Res. 34 (1996) 715–725. [Google Scholar]
  • A. Dolgui, D. Ivanov, S.P. Sethi and B. Sokolov, Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications. Int. J. Prod. Res. 57 (2019) 411–432. [Google Scholar]
  • C. Wu, X. Liu and A. Li, A loss-averse retailer–supplier supply chain model under trade credit in a supplier-Stackelberg game. Math. Comput. Simul. 182 (2021) 353–365. [Google Scholar]
  • Y. Levin, J. McGill and M. Nediak, Risk in revenue management and dynamic pricing. Oper. Res. 56 (2008) 326–343. [Google Scholar]
  • V.L.M. Spiegler, A.T. Potter, M.M. Naim and D.R. Towill, The value of nonlinear control theory in investigating the underlying dynamics and resilience of a grocery supply chain. Int. J. Prod. Res 54 (2016) 265–286. [CrossRef] [Google Scholar]
  • S. Nayak and A. Ojha, On multi-level multi-objective linear fractional programming problem with interval parameters. RAIRO: Oper. Res. 53 (2019) 1601–1616. [Google Scholar]
  • M. Christopher and H. Peck, Building the resilient supply chain. Int. J. Logistics Manage. 15 (2004) 1–14. [Google Scholar]
  • Q. Qing, W. Shi, H. Li and Y. Shao, Dynamic analysis and optimization of a production control system under supply and demand uncertainties. Discrete Dyn. Nat. Soc. 2016 (2016) 1–17. [Google Scholar]
  • S. John, M.M.M. Naim and D.R.R. Towill, Dynamic analysis of a WIP compensated decision support system. Int. J. Manage. Syst. Design. 1 (1994) 283–297. [Google Scholar]
  • L. Zhou and S.M. Disney, Bullwhip and inventory variance in a closed loop supply chain. OR Spect. 28 (2006) 127–149. [Google Scholar]
  • Y.F. Chen and S.M. Disney, The myopic order-up-to policy with a proportional feedback controller. Int. J. Prod. Res. 45 (2007) 351–368. [Google Scholar]
  • D. Ivanov, A. Dolgui, B. Sokolov, F. Werner and M. Ivanova, A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. Int. J. Prod. Res. 54 (2016) 386–402. [Google Scholar]
  • L. Ning, Bifurcation analysis in the system with the existence of two stable limit cycles and a stable steady state. Nonlinear Dyn. 102 (2020) 115–127. [Google Scholar]
  • C.F. Hsueh and M.S. Chang, Equilibrium analysis and corporate social responsibility for supply chain integration. Eur. J. Oper. Res. 190 (2008) 116–129. [Google Scholar]
  • J. Dong, D. Zhang and A. Nagurney, A supply chain network equilibrium model with random demands. Eur. J. Oper. Res. 156 (2004) 194–212. [Google Scholar]
  • L. Rabelo, M. Helal, C. Lertpattarapong, R. Moraga and A. Sarmiento, Using system dynamics, neural nets, and eigenvalues to analyse supply chain behaviour: a case study. Int. J. Prod. Res. 46 (2008) 51–71. [Google Scholar]
  • F. Zhang and C. Wang, Dynamic pricing strategy and coordination in a dual-channel supply chain considering service value. Appl. Math. Model. 54 (2018) 722–742. [Google Scholar]
  • V.L.M. Spiegler, M.M. Naim and J. Wikner, A control engineering approach to the assessment of supply chain resilience. Int. J. Prod. Res. 50 (2012) 6162–6187. [Google Scholar]
  • J. Dejonckheere, S.M. Disney, M.R. Lambrecht and D.R. Towill, The impact of information enrichment on the Bullwhip effect in supply chains: a control engineering perspective. Eur. J. Oper. Res. 153 (2003) 727–750. [Google Scholar]
  • X. Xu, S. do Lee, H.S. Kim and S.S. You, Management and optimisation of chaotic supply chain system using adaptive sliding mode control algorithm. Int. J. Prod. Res. 59 (2021) 2571–2587. [Google Scholar]
  • S. Mondal, A new supply chain model and its synchronization behaviour. Chaos Solitons Fractals 123 (2019) 140–148. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Tirandaz, Complete synchronisation of supply chain system using adaptive integral sliding mode control method. Int. J. Model. Identif. Control 31 (2019) 314–322. [CrossRef] [Google Scholar]
  • A. Göksu, U.E. Kocamaz and Y. Uyaroğlu, Synchronization and control of chaos in supply chain management. Comput. Ind. Eng. 86 (2015) 107–115. [Google Scholar]
  • Y. Uyaroğlu and S. Emiroğlu, Passivity-based chaos control and synchronization of the four dimensional Lorenz-Stenflo system via one input. JVC/J. Vibr. Control 21 (2015) 1657–1664. [CrossRef] [Google Scholar]
  • U.E. Kocamaz, H. Taşkın, Y. Uyaroğlu and A. Göksu, Control and synchronization of chaotic supply chains using intelligent approaches. Comput. Ind. Eng. 102 (2016) 476–487. [Google Scholar]
  • M. Boccadoro, F. Martinelli and P. Valigi, Supply chain management by H-infinity control. IEEE Trans. Autom. Sci. Eng. 5 (2008) 703–707. [Google Scholar]
  • A. Mohammadzadeh and S. Ghaemi, Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay. Nonlinear Dyn. 93 (2018) 1809–1821. [Google Scholar]
  • M.S. Tavazoei, Comments on chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 20 (2012) 623–635. [Google Scholar]
  • C.H. Yang and C.L. Wu, Nonlinear dynamic analysis and synchronization of four-dimensional Lorenz-Stenflo system and its circuit experimental implementation. Abstract Appl. Anal. 2014 (2014) 1–17. [Google Scholar]
  • Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system. Chaos Solitons Fractals 130 (2020) 1–7. [Google Scholar]
  • K.R. Anne, J.C. Chedjou and K. Kyamakya, Bifurcation analysis and synchronisation issues in a three-echelon supply chain. Int. J. Logistics Res. App. 12 (2009) 347–362. [Google Scholar]
  • Z. Guo and J. Ma, Dynamics and implications on a cooperative advertising model in the supply chain. Commun. Nonlinear Sci. Numer. Simul. 64 (2018) 198–212. [Google Scholar]
  • J. Ma and L. Xie, The impact of loss sensitivity on a mobile phone supply chain system stability based on the chaos theory. Commun. Nonlinear Sci. Numer. Simul. 55 (2018) 194–205. [Google Scholar]
  • W. der Chang and J.J. Yan, Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems. Chaos Solitons Fractals. 26 (2005) 167–175. [Google Scholar]
  • R.R. Corsini, A. Costa, S. Fichera and J.M. Framinan, A new data-driven framework to select the optimal replenishment strategy in complex supply chains. IFAC-PapersOnLine 55 (2022) 1423–1428. [CrossRef] [Google Scholar]
  • E. Badakhshan and P. Ball, Applying digital twins for inventory and cash management in supply chains under physical and financial disruptions. Int. J. Prod. Res. (2022) 1–23. DOI: 10.1080/00207543.2022.2093682. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.