Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 761 - 789
Published online 28 April 2023
  • N. Javadian, S. Modarres and A. Bozorgi, A Bi-objective stochastic optimization model for humanitarian relief chain by using evolutionary algorithms. Int. J. Eng. Trans. A Basics 30 (2017) 1526–1537. [Google Scholar]
  • A. Boostani, F. Jolai and A. Bozorgi-Amiri, Designing a sustainable humanitarian relief logistics model in pre-and postdisaster management. Int. J. Sustain. Transp. 15 (2020) 604–620. [Google Scholar]
  • U.R. Tuzkaya, S.S. Heragu, G.W. Evans and M. Johnson, Designing a large-scale emergency logistics network – a case study for Kentucky. Eur. J. Ind. Eng. 8 (2014) 513–532. [CrossRef] [Google Scholar]
  • A.M. Caunhye, X. Nie and S. Pokharel, Optimization models in emergency logistics: A literature review. Soc.-Econ. Planning Sci. 64 (2012) 4–13. [CrossRef] [Google Scholar]
  • S. Mansoori, A. Bozorgi-Amiri and M.S. Pishvaee, A robust multi-objective humanitarian relief chain network design for earthquake response, with evacuation assumption under uncertainties. Neural Comput. App. 32 (2019) 2183–2203. [Google Scholar]
  • M. Azmat and S. Kummer, Potential applications of unmanned ground and aerial vehicles to mitigate challenges of transport and logistics-related critical success factors in the humanitarian supply chain. Asi. J. Sustain. Soci. Respon. 5 (2020) 1–22. [Google Scholar]
  • J. Zhang, Z. Wang and F. Ren, Optimization of humanitarian relief supply chain reliability: A case study of the Ya’an earthquake. Ann. Oper. Res. 283 (2019) 1551–1572. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kar, K. Basu and B. Sarkar, Advertisement policy for dual-channel within emissions-controlled flexible production system. J. Retail. Consum. Serv. 71 (2023) 103077. [CrossRef] [Google Scholar]
  • U. Chaudhari, A. Bhadoriya, M.Y. Jani and B. Sarkar, A generalized payment policy for deteriorating items when demand depends on price, stock, and advertisement under carbon tax regulations. Math. Comput. Simul. 207 (2023) 556–574. [CrossRef] [Google Scholar]
  • A.S. Mahapatra, M.S. Mahapatra, B. Sarkar and S.K. Majumder, Benefit of preservation technology with promotion and time-dependent deterioration under fuzzy learning. Exp. Syst. Appl. 201 (2022) 117169. [CrossRef] [Google Scholar]
  • M.S. Habib, M. Omair, M.B. Ramzan, T.N. Chaudhary, M. Farooq and B. Sarkar, A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network. J. Clean. Prod. 366 (2022) 132752. [CrossRef] [Google Scholar]
  • B. Pal, A. Sarkar and B. Sarkar, Optimal decisions in a dual-channel competitive green supply chain management under promotional effort. Exp. Syst. Appl. 211 (2023) 118315. [CrossRef] [Google Scholar]
  • B. Oryani, A. Moridian, B. Sarkar, S. Rezania, H. Kamyab and M.K. Khan, Assessing the financial resource curse hypothesis in Iran: the novel dynamic ARDL approach. Res. Pol. 78 (2022) 102899. [CrossRef] [Google Scholar]
  • D. Yadav, R. Singh, A. Kumar and B. Sarkar, Reduction of pollution through sustainable and flexible production by controlling by-products. J. Env. Inf. 40 (2022) 106–124. [Google Scholar]
  • A.K. Mondal, S. Pareek, K. Chaudhuri, A. Bera, R.K. Bachar and B. Sarkar, Technology license sharing strategy for remanufacturing industries under a closed-loop supply chain management bonding. RAIRO: Oper. Res. 56 (2022) 3017–3045. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S.K. Hota, S.K. Ghosh and B. Sarkar, A solution to the transportation hazard problem in a supply chain with an unreliable manufacturer. AIMS Env. Sci. 9 (2022) 354–380. [CrossRef] [Google Scholar]
  • O. Berman, Z. Drezner and D. Krass, Cooperative cover location problems: The planar case. IIE Trans. 42 (2010) 232–246. [Google Scholar]
  • J. Bagherinejad, M. Bashiri and H. Nikzad, General form of a cooperative gradual maximal covering location problem. J. Ind. Eng. Int. 14 (2018) 241–253. [CrossRef] [Google Scholar]
  • M. Karatas and L. Eriskin, The minimal covering location and sizing problem in the presence of gradual cooperative coverage. Eur. J. Oper. Res. 295 (2021) 838–856. [CrossRef] [Google Scholar]
  • J. Fathali, A row generation method for the inverse continuous facility location problems. Comput. Ind. Eng. 171 (2022) 108482. [CrossRef] [Google Scholar]
  • G. Barbarosoglu and Y. Arda, A two-stage stochastic programming framework for transportation planning in disaster response. J. Oper. Res. Soc. 55 (2014) 43–53. [Google Scholar]
  • L.V. Snyder and M.S. Daskin, Reliability models for facility location: The expected failure cost case. Transp. Sci. 39 (2005) 400–416. [CrossRef] [Google Scholar]
  • G.H. Tzeng, H.J. Cheng and T.D. Huang, Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E: Logistics Transp. Rev. 43 (2007) 673–686. [CrossRef] [Google Scholar]
  • M.S. Chang, Y.L. Tseng and J.W. Chen, A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transp. Res. Part E: Logistics Transp. Rev. 43 (2007) 737–754. [CrossRef] [Google Scholar]
  • B.M. Beamon and B. Balcik, Performance measurement in humanitarian relief chains. Int. J. Publ. Sect. Manag. 21 (2008) 4–25. [CrossRef] [Google Scholar]
  • M. Beraldi and M.E. Bruni, A probabilistic model applied to emergency service vehicle location. Eur. J. Oper. Res. 196 (2009) 323–331. [CrossRef] [Google Scholar]
  • B. Sarkar, B. Ganguly, S. Pareek and L.E. Cárdenas-Barrón, A three-echelon green supply chain management for biodegradable products with three transportation modes. Comp. Ind. Eng. 174 (2022) 108727. [CrossRef] [Google Scholar]
  • T. Mukherjee, I. Sangal, B. Sarkar and Q.A. Almaamari, Logistic models to minimize the material handling cost within a cross-dock. Math. Bio. Eng. 20 (2023) 3099–3119. [Google Scholar]
  • C.G. Rawls and M.A. Turnquist, Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B: Methodol. 44 (2010) 521–534. [CrossRef] [Google Scholar]
  • M.S. Canbolat and M.V. Massow, Locating emergency facilities with random demand for risk minimization. Expert Syst. App. 38 (2011) 10099–10106. [CrossRef] [Google Scholar]
  • A. Afshar and A. Haghani, Modeling integrated supply chain logistics in real-time large-scale disaster relief operations. Soc.-Econ. Plann. Sci. 46 (2012) 327–338. [CrossRef] [Google Scholar]
  • S.V.S. Padiyar, V. Vandana, N. Bhagat, S.R. Singh and B. Sarkar, Joint replenishment strategy for deteriorating multi-item through multi-echelon supply chain model with imperfect production under imprecise and inflationary environment. RAIRO: Oper. Res. 56 (2022) 3071–3096. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • K.Y. Jeong, J.D. Hong and Y. Xie, Design of emergency logistics networks, taking efficiency, risk and robustness into consideration. Int. J. Logistics Res. App. 17 (2014) 1–22. [CrossRef] [Google Scholar]
  • H. Wang, L. Du and M. Shihua, Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transp. Res. Part E: Logistics Transp. Rev. 69 (2014) 160–179. [CrossRef] [Google Scholar]
  • S. Tofighi, S.A. Torabi and S.A. Mansouri, Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 250 (2016) 239–250. [CrossRef] [Google Scholar]
  • S. Zokaee, A. Bozorgi-Amiri and S.J. Sadjadi, A robust optimization model for humanitarian relief chain design under uncertainty. Appl. Math. Modell. 40 (2016) 7996–8016. [CrossRef] [Google Scholar]
  • L.A. Hazrati, M. Seifbarghy and M. Bashiri, A cooperative covering problem under disruption considering backup coverage. Int. J. Serv. Oper. Manage. 29 (2018) 273–288. [Google Scholar]
  • X. Li, M. Ramshani and Y. Huang, Cooperative maximal covering models for humanitarian relief chain management. Comput. Ind. Eng. 119 (2018) 301–308. [CrossRef] [Google Scholar]
  • M. Shavarani, Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution: A case study. J. Humaniterian Logistics Supply Chain Manage. 9 (2019) 70–81. [CrossRef] [Google Scholar]
  • H. Beiki, S.M. Seyedhosseini, V.R. Ghezavati and S.M. Seyedaliakbar, Multi-objective optimization of multi-vehicle relief logistics considering satisfaction levels under uncertainty. Int. J. Eng. 33 (2020) 814–824. [Google Scholar]
  • J. Cheng, X. Feng and X. Bai, Modeling equitable and effective distribution problem in humanitarian relief logistics by robust goal programming. Comput. Ind. Eng. 155 (2021) 107183. [CrossRef] [Google Scholar]
  • Z. Vosooghi, S.M.J.M. Al-e-hashem and B. Lahijanian, Scenario-based redesigning of a relief supply-chain network by considering humanitarian constraints, triage, and volunteers’ help. Soc.-Econ. Plann. Sci. 4 (2022) 101399. [CrossRef] [Google Scholar]
  • I. Shokr, F. Jolai and A. Bozorgi-Amiri, A collaborative humanitarian relief chain design for disaster response. Comput. Ind. Eng. 172 (2022) 108643. [CrossRef] [Google Scholar]
  • R.K. Bachar, S. Bhuniya, S.K. Ghosh and B. Sarkar, Sustainable green production model considering variable demand, partial outsourcing, and rework. AIMS Environ. Sci. 9 (2022) 325–353. [CrossRef] [Google Scholar]
  • R. Church and C. Revelle, The maximal covering location problem. Location Spatial Models 32 (1974) 101–118. [Google Scholar]
  • J.P.C. Kleijnen, Ethical issues in modeling: some reflections. Eur. J. Oper. Res. 130 (2001) 223–230. [CrossRef] [Google Scholar]
  • D.A. José and R. Morabito, Production planning in furniture settings via robust optimization. Comput. Oper. Res. 39 (2012) 139–150. [CrossRef] [Google Scholar]
  • M.S. Pishvaee, J. Razmi and S.A. Torabi, Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206 (2012) 1–20. [Google Scholar]
  • M.S. Pishvaee and S.A. Torabi, A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161 (2010) 2668–2683. [CrossRef] [Google Scholar]
  • A. Sarkar, R. Guchhait and B. Sarkar, Application of the artificial neural network with multithreading within an inventory model under uncertainty and inflation. Int. J. Fuzzy Syst. 24 (2022) 2318–2332. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.