Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 743 - 759
Published online 28 April 2023
  • I. Welch and A. Goyal, A comprehensive look at the empirical performance of equity premium prediction. Rev. Finan. Stud. 21 (2008) 1455–1508. [CrossRef] [Google Scholar]
  • S. Basak, S. Kar, S. Saha, L. Khaidem and S.R. Dey, Predicting the direction of stock market prices using tree-based classifiers. North Am. J. Econ. Finan. 47 (2019) 552–567. [CrossRef] [Google Scholar]
  • H. Huang and A.N. Kercheval, A generalized birth–death stochastic model for high-frequency order book dynamics. Quant. Finan. 12 (2012) 547–557. [CrossRef] [Google Scholar]
  • M. Längkvist, L. Karlsson and A. Loutfi, A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42 (2014) 11–24. [CrossRef] [Google Scholar]
  • M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, N. Seliya, R. Wald and E. Muharemagic, Deep learning applications and challenges in big data analytics. J. Big Data 2 (2015) 1–21. [CrossRef] [Google Scholar]
  • Y. LeCun, Y. Bengio and G. Hinton, Deep learning. Nature 521 (2015) 436–444. [CrossRef] [PubMed] [Google Scholar]
  • M. Denil, B. Shakibi, L. Dinh, M.A. Ranzato and N. De Freitas, Predicting parameters in deep learning, in Advances in Neural Information Processing Systems. Vol. 26. NeurIPS Proceedings (2013). [Google Scholar]
  • A. Yadav, C.K. Jha and A. Sharan, Optimizing lstm for time series prediction in indian stock market. Proc. Comput. Sci. 167 (2020) 2091–2100. [CrossRef] [Google Scholar]
  • E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K. Stanley and J. Clune, Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents, in Advances in Neural Information Processing Systems. Vol. 31. NeurIPS Proceedings (2018). [Google Scholar]
  • Y. Li, Z. Zhu, D. Kong, H. Han and Y. Zhao, EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 181 (2019) 104785. [CrossRef] [Google Scholar]
  • W. Deng, H. Liu, J. Xu, H. Zhao and Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans. Instrum. Meas. 69 (2020) 7319–7327. [CrossRef] [Google Scholar]
  • M.M. Rounaghi and F.N. Zadeh, Investigation of market efficiency and financial stability between S&P 500 and london stock exchange: monthly and yearly forecasting of time series stock returns using arma model. Phys. A: Stat. Mech. App. 456 (2016) 10–21. [CrossRef] [Google Scholar]
  • M.A. Arellano and G. Rodriguez, Empirical modeling of high-income and emerging stock and forex market return volatility using markov-switching garch models. North Am. J. Econ. Finan. 52 (2020) 101163. [CrossRef] [Google Scholar]
  • M.A. Naeem, I. Mbarki and S.J.H. Shahzad, Predictive role of online investor sentiment for cryptocurrency market: from happiness and fears. Int. Rev. Econ. Finan. 73 (2021) 496–514. [CrossRef] [Google Scholar]
  • T. Korol, Early warning models against bankruptcy risk for central european and latin american enterprises. Econ. Modell. 31 (2013) 22–30. [CrossRef] [Google Scholar]
  • J. Zhao, Z. Yang and Y. Xu, Nonparallel least square support vector machine for classification. Appl. Intell. 45 (2016) 1119–1128. [CrossRef] [Google Scholar]
  • H. Ince, A.F. Cebeci and S.Z. Imamoglu, An artificial neural network-based approach to the monetary model of exchange rate. Comput. Econ. 53 (2019) 817–831. [CrossRef] [Google Scholar]
  • N.A. Hitam, A.R. Ismail and F. Saeed, An optimized support vector machine (SVM) based on particle swarm optimization (PSO) for cryptocurrency forecasting. Proc. Comput. Sci. 163 (2019) 427–433. [CrossRef] [Google Scholar]
  • L. Han, L. Han and H. Zhao, Orthogonal support vector machine for credit scoring. Eng. App. Artif. Intell. 26 (2013) 848–862. [CrossRef] [Google Scholar]
  • X.-L. Gong, X.-H. Liu, X. Xiong and X.-T. Zhuang, Forecasting stock volatility process using improved least square support vector machine approach. Soft Comput. 23 (2019) 11867–11881. [CrossRef] [Google Scholar]
  • M. Dixon, D. Klabjan and J.H. Bang, Implementing deep neural networks for financial market prediction on the intel Xeon Phi, in Proceedings of the 8th Workshop on High Performance Computational Finance (2015) 1–6. DOI: 10.2139/ssrn.2627258. [Google Scholar]
  • C. Liu, Y. Fan and X. Zhu, Fintech index prediction based on RF-GA-DNN algorithm. Wirel. Commun. Mobile Comput. 2021 (2021) 1–9. [Google Scholar]
  • M. Gong, J. Liu, H. Li, Q. Cai and L. Su, A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26 (2015) 3263–3277. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • O. Lachiheb and M.S. Gouider, A hierarchical deep neural network design for stock returns prediction. Proc. Comput. Sci. 126 (2018) 264–272. [CrossRef] [Google Scholar]
  • J. Liu, M. Gong, Q. Miao, X. Wang and H. Li, Structure learning for deep neural networks based on multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. 29 (2017) 2450–2463. [Google Scholar]
  • J. Huang, W. Sun and L. Huang, Deep neural networks compression learning based on multiobjective evolutionary algorithms. Neurocomputing 378 (2020) 260–269. [CrossRef] [Google Scholar]
  • P. Tamilselvan and P. Wang, Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013) 124–135. [CrossRef] [Google Scholar]
  • P. Zhang and B. Ci, Deep belief network for gold price forecasting. Res. Policy 69 (2020) 101806. [CrossRef] [Google Scholar]
  • F. Shen, J. Chao and J. Zhao, Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167 (2015) 243–253. [CrossRef] [Google Scholar]
  • L. Yu, R. Zhou, L. Tang and R. Chen, A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data. Appl. Soft Comput. 69 (2018) 192–202. [CrossRef] [Google Scholar]
  • T. Kuremoto, S. Kimura, K. Kobayashi and M. Obayashi, Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137 (2014) 47–56. [CrossRef] [Google Scholar]
  • H.Y. Kim and C.H. Won, Forecasting the volatility of stock price index: a hybrid model integrating LSTM with multiple garch-type models. Expert Syst. App. 103 (2018) 25–37. [CrossRef] [Google Scholar]
  • A. Altan, S. Karasu and S. Bekiros, Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques. Chaos Solitons Fractals 126 (2019) 325–336. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Awoke, M. Rout, L. Mohanty and S.C. Satapathy, Bitcoin price prediction and analysis using deep learning models, in Communication Software and Networks: Proceedings of INDIA 2019. Springer (2020) 631–640. [Google Scholar]
  • H. Niu, K. Xu and C. Liu, A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction. Energy 231 (2021) 120941. [CrossRef] [Google Scholar]
  • I. Loshchilov and F. Hutter, CMA-ES for hyperparameter optimization of deep neural networks. Preprint arXiv:1604.07269 (2016). [Google Scholar]
  • H. Chung and K.-S. Shin, Genetic algorithm-optimized long short-term memory network for stock market prediction. Sustainability 10 (2018) 3765. [CrossRef] [Google Scholar]
  • S.I. Valdez and A. Rojas-Domnguez, An evolutionary algorithm of linear complexity: application to training of deep neural networks. Preprint arXiv:1907.05951 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.