Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 731 - 741
DOI https://doi.org/10.1051/ro/2023003
Published online 28 April 2023
  • A. Agnetis, P.B. Mirchani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents. Oper. Res. 52 (2004) 229–242. [CrossRef] [MathSciNet] [Google Scholar]
  • K.R. Baker and J.C. Smith, A multiple-criterion model for machine scheduling. J. Sched. 6 (2003) 7–16. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Brucker, Scheduling Algorithms. 3rd edition, Springer, Berlin (2001). [Google Scholar]
  • P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn and S.L. Van De Velde, Scheduling a batching machine. J. Sched. 1 (1998) 31–54. [CrossRef] [MathSciNet] [Google Scholar]
  • Q. Feng, W.P. Shang, C.W. Jiao and W.J. Li, Two-agent scheduling on a bounded parallel-batching machine with makespan and maximum lateness objectives. J. Oper. Res. Soc. China 8 (2020) 189–196. [CrossRef] [MathSciNet] [Google Scholar]
  • Q. Feng, J.J. Yuan, H.L. Liu and C. He, A note on two-agent scheduling on an unbounded parallel-batching machine with makespan and maximum lateness objectives. Appl. Math. Model. 37 (2013) 7071–7076. [CrossRef] [MathSciNet] [Google Scholar]
  • Z.C. Geng and J.J. Yuan, A note on unbounded parallel-batch scheduling. Inf. Process. Lett. 115 (2015) 969–974. [CrossRef] [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5 (1979) 287–326. [Google Scholar]
  • C. He and L. Li, Hierarchical Optimization with two maximum costs on an unbounded parallel-batching machine. RAIRO: OR 52 (2018) 55–60. [CrossRef] [EDP Sciences] [Google Scholar]
  • C. He, S.S. Li and J. Wu, Simultaneous optimization scheduling with two agents on an unbounded serial-batching machine. RAIRO: OR 55 (2021) 3701–3714. [CrossRef] [EDP Sciences] [Google Scholar]
  • C. He, H. Lin and L. Li, Hierarchical minimization of two maximum costs on a bounded serial-batching machine. RAIRO: OR 55 (2021) 135–140. [CrossRef] [EDP Sciences] [Google Scholar]
  • C. He, Y.X. Lin and J.J. Yuan, Bicriteria scheduling on a batching machine to minimize maximum lateness and makespan. Theor. Comput. Sci. 381 (2007) 234–240. [CrossRef] [Google Scholar]
  • C. He, Y.X. Lin and J.J. Yuan, Bicriteria scheduling of minimizing maximum lateness and makespan on a serial-batching machine. Found. Comput. Decis. Sci. 33 (2008) 369–376. [Google Scholar]
  • C. He, H. Lin, J.J. Yuan and Y.D. Mu, Batching machine scheduling with bicriteria: maximum cost and makespan. Asia-Pac. J. Oper. Res. 31 (2014) 1–10. [Google Scholar]
  • C. He, X.M. Wang, Y.X. Lin and Y.D. Mu, An improved algorithm for a bicriteria batching scheduling problem. RAIRO: OR 47 (2013) 1–8. [CrossRef] [EDP Sciences] [Google Scholar]
  • C. He, J. Wu and H. Lin, Two-agent bounded parallel-batching scheduling for minimizing maximum cost and makespan. Discrete Optim. 45 (2022) 100698. [CrossRef] [Google Scholar]
  • J.A. Hoogeveen, Single-machine scheduling to minimize a function of two or three maximum cost criteria. J. Algorithms 21 (1996) 415–433. [Google Scholar]
  • H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res. 167 (2005) 592–623. [CrossRef] [Google Scholar]
  • J.A. Hoogeveen and S.L. Van de Velde, Minimizing total completion time and maximum cost simultaneously is solvable in polynomial time. Oper. Res. Lett. 17 (1995) 205–208. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Lazarev, D.I. Arkhipov and F. Werner, Scheduling jobs with equal processing times on a single machine: minimizing maximum lateness and makespan. Optim. Lett. 11 (2017) 165–177. [CrossRef] [MathSciNet] [Google Scholar]
  • V. T’kindt and J.-C. Billaut, Multicriteria scheduling problems: a survey. RAIRO: OR 35 (2001) 143–163. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.