Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 333 - 350
Published online 15 March 2023
  • M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5 (1985) 121–124. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Andrei, An unconstrained optimization test functions. Adv. Modeling Optim. 10 (2008) 147–161. [MathSciNet] [Google Scholar]
  • A.M. Awwal, I.M. Sulaiman, M. Malik, M. Mamat, P. Kumam and K. Sitthithakerngkiet, A spectral RMIL conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access 9 (2021) 75398–75414. [CrossRef] [Google Scholar]
  • I. Bongartz, A.R. Conn, N. Gould and P.L. Toint, Constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21 (1995) 123–160. [CrossRef] [Google Scholar]
  • Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Dai and F. Wen, Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property. Appl. Math. Comput. 218 (2012) 7421–7430. [MathSciNet] [Google Scholar]
  • Y.H. Dai, J.Y. Han, G.H. Liu, D.F. Sun, X. Yin and Y. Yuan, Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10 (1999) 348–358. [Google Scholar]
  • E.D. Dolan and J.J. Morè, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [CrossRef] [MathSciNet] [Google Scholar]
  • X.W. Du, P. Zhang and W. Ma, Some modified conjugate gradient methods for unconstrained optimization. J. Comput. Appl. Math. 305 (2016) 92–114. [CrossRef] [MathSciNet] [Google Scholar]
  • W.F. Eddy, Optimum kernel estimators of the mode. Ann. Stat. 8 (1980) 870–882. [Google Scholar]
  • R. Fletcher, Practical Methods of Optimization, 2nd edition. Wiley, New York (1987). [Google Scholar]
  • R. Fletcher and C. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409–436. [CrossRef] [Google Scholar]
  • H. Huang, Z. Wei and S. Yao, The proof of the sufficient descent condition of the Wei–Yao–Liu conjugate gradient method under the strong Wolfe-Powell line search. Appl. Math. Comput. 189 (2007) 1241–1245. [CrossRef] [MathSciNet] [Google Scholar]
  • V.D. Konakov, On the asymptotic normality of the mode of multidimensional distributions. Theory Probab. Appl. 19 (1974) 794–799. [CrossRef] [Google Scholar]
  • J.K. Liu and S.J. Li, New hybrid conjugate gradient method for unconstrained optimization. Appl. Math. Comput. 245 (2014) 36–43. [MathSciNet] [Google Scholar]
  • Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms. Theory JOTA 69 (1991) 129–137. [CrossRef] [Google Scholar]
  • G. Ma, H. Lin, W. Jin and D. Han, Two modified conjugate gradient methods for unconstrained optimization with applications in image restoration problems. J. Appl. Math. Comput. 68 (2022) 4733–4758. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Parzen, On estimating probability density function and mode. Ann. Math. Stat. 33 (1962) 1065–1076. [CrossRef] [Google Scholar]
  • E. Polak and G. Ribière, Note sur la convergence de directions conjuguée. Rev. Francaise Informat Recherche Operationelle 16 (1969) 35–43. [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
  • M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method. Lect. Notes Math. 1066 (1984) 122–141. [CrossRef] [Google Scholar]
  • T.W. Sager, An iterative method for estimating a multivariate mode and isopleth. J. Amer. Statist. Assoc. 74 (1975) 329–339. [Google Scholar]
  • M. Samanta, Nonparametric estimation of the mode of a multivariate density. South Afr. Stat. J. 7 (1973) 109–117. [Google Scholar]
  • Z. Wei, S. Yao and L. Liu, The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183 (2006) 1341–1350. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Yao, Z. Wei and H. Huang, A notes about WYL’s conjugate gradient method and its applications. Appl. Math. Comput. 191 (2007) 381–388. [MathSciNet] [Google Scholar]
  • L. Zhang, An improved Wei–Yao–Liu nonlinear conjugate gradient method for optimization computation. Appl. Math. Comput. 6 (2009) 2269–2274. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Zhu, D. Zhang and S. Wang, Two modified DY conjugate gradient methods for unconstrained optimization problems. Appl. Math. Comput. 373 (2020) 125004. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Zoutendijk, Nonlinear programming computational methods. J. Integer Nonlinear Program. (1970) 37–86. [Google Scholar]
  • N. Zullpakkal, N. Aini, N.H.A. Ghani, N.S. Mohamed, N. Idalisa and M. Rivaie, Covid-19 data modelling using hybrid conjugate gradient method. J. Inf. Optim. Sci. 43 (2022) 837–853. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.