Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 351 - 369
Published online 15 March 2023
  • B. Liu, Research on Enterprise Competitive Intelligence Power in Dynamic Environment, 1st edition. Science Press, China (2019) 1–2. [Google Scholar]
  • Y.Y. Wang, F. Tao and J. Wang, Information disclosure and blockchain technology adoption strategy for competing platforms. Inf. Manage. 59 (2022) 103506. [CrossRef] [Google Scholar]
  • F. Wu and J.H. Ma, Evolution dynamics of agricultural Internet of Things technology promotion and adoption in China. Discrete Dyn. Nat. Soc. 2020 (2020) 1–18. [Google Scholar]
  • A. Ahmad, M. Aqeel and M. Fiaz, Interest rate creates chaos in finance system, control of chaos through modified adaptive back stepping technique, in The 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE (2019) 1–7. [Google Scholar]
  • L. Tie, B. Huang, B. Pan and G. Sun, Using big data to discover chaos in China’s futures market during COVID-19. CMC-Comput. Mater. Continua. 69 (2021) 3095–3107. [CrossRef] [Google Scholar]
  • A. Rodrłguez and M. Melgarejo, Identification of Colombian coffee price dynamics. Chaos 30 (2020) 013145. [CrossRef] [PubMed] [Google Scholar]
  • S. Lahmiri and S. Bekiros, Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets. Chaos Solitons Fractals Elsevier 131 (2020) 109472. [CrossRef] [Google Scholar]
  • Y. Liu, S. Liu, D. Ye, H. Tang and F. Wang, Dynamic impact of negative public sentiment on agricultural product prices during COVID-19. J. Retail. Consum. Serv. 64 (2022) 102790. [CrossRef] [Google Scholar]
  • J. Liao, X. Zhu and J. Chen, Dynamic spillovers across oil, gold and stock markets in the presence of major public health emergencies. Int. Rev. Finan. Anal. 77 (2021) 101822. [CrossRef] [Google Scholar]
  • Q. Ma, M. Zhang, S. Ali, D. Kirikkaleli and Z. Khan, Natural resources commodity prices volatility and economic performance: evidence from China pre and post COVID-19. Res. Policy 74 (2021) 1–11. [Google Scholar]
  • H. Ouzia and N. Maculan, Mixed integer nonlinear optimization models for the Euclidean Steiner tree problem in Rd. J. Global Optim. 4 (2021) 1–18. [Google Scholar]
  • N. Kheir, A.R. Mahjoub, M.Y. Naghmouchi, N. Perrot and J.P. Wary, Assessing the risk of complex ICT systems. Ann. Telecommun. 73 (2018) 95–109. [CrossRef] [Google Scholar]
  • A. Arabadzhyan, P. Figini and L. Zirulia, Hotels, prices and risk premium in exceptional times: the case of Milan hotels during the first COVID-19 outbreak. Ann. Tourism Res. Empirical Insight. 2 (2021) 1–14. [Google Scholar]
  • T. Puu, Chaos in duopoly pricing. Chaos Solitons Fractals 1 (1991) 573–581. [CrossRef] [Google Scholar]
  • S.S. Askar and A.A. Elsadany, Nonlinear dynamics of cournot duopoly game: when one firm considers social welfare. Discrete Dyn. Nat. Soc. 2021 (2021) 1–11. [Google Scholar]
  • X. Xi and J. Zhang, Complexity analysis of a decision-making game concerning governments and heterogeneous agricultural enterprises with bounded rationality. Chaos Solitons Fractals 140 (2020) 110220. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Ma, Y. Li and Z. Wang, Analysis of pricing and service effort in dual-channel supply chains with showrooming effect. Int. J. Bifurcation Chaos 202030 (2020) 2050241. [CrossRef] [Google Scholar]
  • R.E. Overbury, Features of a closed-system economy. Nature 242 (1973) 561–565. [CrossRef] [Google Scholar]
  • G. Teza, M. Caraglio and A.L. Stella, Entropic measure unveils country competitiveness and product specialization in the World trade web. Sci Rep. 11 (2021) 10189. [CrossRef] [Google Scholar]
  • C. Busu and M. Busu, Modeling the circular economy processes at the EU level using an evaluation algorithm based on shannon entropy. Processes 6 (2018) 225. [CrossRef] [Google Scholar]
  • W.D. Lou, J.H. Ma and X. Zhan, Bullwhip entropy analysis and chaos control in the supply chain with sales game and consumer returns. entropy 19 (2017) 1–19. [MathSciNet] [Google Scholar]
  • R.A. D’Aveni, Hypercompetitive Rivalries: Competing in Highly Dynamic Environments, Abridged edition. Free Press, New York, NY, (1 Sept.) (1995). [Google Scholar]
  • D.S. Jesal, Disclosure of information under competition: an experimental study. Games Econ. Behav. 129 (2021) 158–180. [CrossRef] [Google Scholar]
  • Y. Yu and Y. He, Information disclosure decisions in an organic food supply chain under competition. J. Cleaner Prod. 292 (2021) 125976. [CrossRef] [Google Scholar]
  • H. Alibeiki and M. Gumus, Supply competition under quality scores: motivations, information sharing and credibility. Int. J. Prod. Econ. 226 (2020) 107612. [CrossRef] [Google Scholar]
  • Q. Fu, Y. Li and K. Zhu, Costly information acquisition under horizontal competition. Oper. Res. Lett. 46 (2018) 418–423. [CrossRef] [MathSciNet] [Google Scholar]
  • J.A. Brito, L.D. Lima, P.H. González, B. Oliveira and N. Maculan, Heuristic approach applied to the optimum stratification problem. RAIRO: Oper. Res. 55 (2021) 979–996. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, N. Maculan and G.W. Weber, A green inventory model with the effect of carbon taxation. Ann. Oper. Res. 309 (2022) 233–248. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Mahata and B.K. Debnath, A profit maximization single item inventory problem considering deterioration during carrying for price dependent demand and preservation technology investment. RAIRO: Oper. Res. 56 (2022) 1841–1856. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A.P.V. Beltrao, L.S. Ochi, J.A.M. Brito, G.S. Semaan, N. Maculan and A.C. Fadel, A new approach for the traveling salesperson problem with hotel selection. EURO J. Transp. Logistics 10 (2021) 100062. [CrossRef] [Google Scholar]
  • W. Peng, B. Xin and L. Xie, Optimal strategies for product price, customer environmental volunteering, and corporate environmental responsibility. J. Cleaner Prod. 346 (2022) 132635. [CrossRef] [Google Scholar]
  • F. Wu and J.H. Ma, The equilibrium, complexity analysis and control in epiphytic supply chain with product horizontal diversifification. Nonlinear Dyn. 93 (2018) 2145–2158. [CrossRef] [Google Scholar]
  • D.R. Wilkie, Second law of thermodynamics. Nature 251 (1974) 601–602. [CrossRef] [Google Scholar]
  • J. Lin, Divergence measures based on the Shannon entropy. Inf. Theory IEEE Trans. 37 (1991) 145–151. [CrossRef] [Google Scholar]
  • F. Wu, L.P. Li and J.H. Ma, Complex fluctuation of power price in dual-channel and multi-energy supply chain based on sticky expectation. Int. J. Bifurcation Chaos 31 (2021) 1–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.